Issue |
A&A
Volume 646, February 2021
|
|
---|---|---|
Article Number | A4 | |
Number of page(s) | 11 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361/202040066 | |
Published online | 02 February 2021 |
Planet cartography with neural learned regularization
1
Instituto de Astrofísica de Canarias (IAC),
Avda Vía Láctea S/N,
38200 La Laguna,
Tenerife, Spain
e-mail: aasensio@iac.es
2
Departamento de Astrofísica, Universidad de La Laguna,
38205 La Laguna,
Tenerife, Spain
Received:
4
December
2020
Accepted:
10
December
2020
Aims. Finding potential life harboring exo-Earths with future telescopes is one of the aims of exoplanetary science. Detecting signatures of life in exoplanets will likely first be accomplished by determining the bulk composition of the planetary atmosphere via reflected or transmitted spectroscopy. However, a complete understanding of the habitability conditions will surely require mapping the presence of liquid water, continents, and/or clouds. Spin-orbit tomography is a technique that allows us to obtain maps of the surface of exoplanets around other stars using the light scattered by the planetary surface.
Methods. We leverage the enormous potential of deep learning, and propose a mapping technique for exo-Earths in which the regularization is learned from mock surfaces. The solution of the inverse mapping problem is posed as a deep neural network that can be trained end-to-end with suitable training data. Since we still lack observational data of the surface albedo of exoplanets, in this work we propose methods based on the procedural generation of planets, inspired by what we have found on Earth. We also consider mapping the recovery of surfaces and the presence of persistent clouds in cloudy planets, a much more challenging problem.
Results. We show that reliable mapping can be carried out with our approach, producing very compact continents, even when using single-passband observations. More importantly, if exoplanets are partially cloudy like the Earth is, we show that it is possible to map the distribution of persistent clouds that always occur in the same position on the surface (associated with orography and sea surface temperatures) together with nonpersistent clouds that move across the surface. This will become the first test to perform on an exoplanet for the detection of an active climate system. For small rocky planets in the habitable zone of their stars, this weather system will be driven by water, and the detection can be considered a strong proxy for truly habitable conditions.
Key words: methods: numerical / planets and satellites: surfaces / planets and satellites: terrestrial planets
© ESO 2021
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.