Issue |
A&A
Volume 643, November 2020
|
|
---|---|---|
Article Number | A137 | |
Number of page(s) | 11 | |
Section | Galactic structure, stellar clusters and populations | |
DOI | https://doi.org/10.1051/0004-6361/202038172 | |
Published online | 13 November 2020 |
Modelling the Galactic very-high-energy γ-ray source population
Universität Potsdam, Institut für Physik und Astronomie, Campus Golm, Haus 28, Karl-Liebknecht-Str. 24/25, 14476 Potsdam-Golm, Germany
e-mail: steppa@uni-potsdam.de, kathrin.egberts@uni-potsdam.de
Received:
14
April
2020
Accepted:
20
September
2020
Context. The High Energy Stereoscopic System Galactic plane survey (HGPS) is to date the most comprehensive census of Galactic γ-ray sources at very high energies (VHE; 100 GeV ≤ E ≤ 100 TeV). As a consequence of the limited sensitivity of this survey, the 78 detected γ-ray sources comprise only a small and biased subsample of the overall population. The larger part consists of currently unresolved sources, which contribute to large-scale diffuse emission to a still uncertain amount.
Aims. We study the VHE γ-ray source population in the Milky Way. For this purpose population-synthesis models are derived based on the distributions of source positions, extents, and luminosities.
Methods. Several azimuth-symmetric and spiral-arm models are compared for spatial source distribution. The luminosity and radius function of the population are derived from the source properties of the HGPS data set and are corrected for the sensitivity bias of the HGPS. Based on these models, VHE source populations are simulated and the subsets of sources detectable according to the HGPS are compared with HGPS sources.
Results. The power-law indices of luminosity and radius functions are determined to range between −1.6 and −1.9 for luminosity and −1.1 and −1.6 for radius. A two-arm spiral structure with central bar is discarded as spatial distribution of VHE sources, while azimuth-symmetric distributions and a distribution following a four-arm spiral structure without bar describe the HGPS data reasonably well. The total number of Galactic VHE sources is predicted to be in the range from 800 to 7000 with a total luminosity and flux of (1.6 − 6.3) × 1036 ph s−1 and (3 − 15) × 10−10 ph cm−2 s−1, respectively.
Conclusions. Depending on the model, the HGPS sample accounts for (68 − 87)% of the emission of the population in the scanned region. This suggests that unresolved sources represent a critical component of the diffuse emission measurable in the HGPS. With the foreseen jump in sensitivity of the Cherenkov Telescope Array, the number of detectable sources is predicted to increase by a factor between 5 and 9.
Key words: astroparticle physics / gamma rays: general / gamma rays: diffuse background / methods: observational / methods: numerical
© C. Steppa and K. Egberts 2020
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.