Issue |
A&A
Volume 612, April 2018
H.E.S.S. phase-I observations of the plane of the Milky Way
|
|
---|---|---|
Article Number | A3 | |
Number of page(s) | 18 | |
Section | Galactic structure, stellar clusters and populations | |
DOI | https://doi.org/10.1051/0004-6361/201732125 | |
Published online | 09 April 2018 |
Population study of Galactic supernova remnants at very high γ-ray energies with H.E.S.S.
1
Centre for Space Research, North-West University,
Potchefstroom 2520, South Africa
2
Universität Hamburg, Institut für Experimentalphysik,
Luruper Chaussee 149,
22761
Hamburg, Germany
3
Max-Planck-Institut für Kernphysik,
PO Box 103980,
69029
Heidelberg, Germany
4
Dublin Institute for Advanced Studies,
31 Fitzwilliam Place,
Dublin 2, Ireland
5
National Academy of Sciences of the Republic of Armenia,
Marshall Baghramian Avenue,
24, 0019
Yerevan, Republic of Armenia
6
Yerevan Physics Institute,
2 Alikhanian Brothers St.,
375036
Yerevan, Armenia
7
Institut für Physik, Humboldt-Universität zu Berlin,
Newtonstr. 15,
12489
Berlin, Germany
8
University of Namibia, Department of Physics,
Private Bag 13301,
Windhoek, Namibia
9
GRAPPA, Anton Pannekoek Institute for Astronomy, University of Amsterdam,
Science Park 904, 1098 XH
Amsterdam, The Netherlands
10
Department of Physics and Electrical Engineering, Linnaeus University,
351 95
Växjö, Sweden
11
Institut für Theoretische Physik, Lehrstuhl IV: Weltraum und Astrophysik, Ruhr-Universität Bochum,
44780
Bochum, Germany
12
GRAPPA, Anton Pannekoek Institute for Astronomy and Institute of High-Energy Physics, University of Amsterdam,
Science Park 904,
1098 XH Amsterdam, The Netherlands
13
Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität Innsbruck, 6020,
Innsbruck, Austria
14
School of Physical Sciences, University of Adelaide,
Adelaide 5005, Australia
15
LUTH, Observatoire de Paris, PSL Research University, CNRS, Université Paris Diderot,
5 Place Jules Janssen,
92190
Meudon, France
16
Sorbonne Universités, UPMC Université Paris 06, Université Paris Diderot, Sorbonne Paris Cité, CNRS, Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE),
4 place Jussieu,
75252,
Paris Cedex 5, France
17
Laboratoire Univers et Particules de Montpellier, Université Montpellier, CNRS/IN2P3,
CC 72, Place Eugène Bataillon, 34095
Montpellier Cedex 5, France
18
IRFU, CEA, Université Paris-Saclay,
91191
Gif-sur-Yvette, France
19
Astronomical Observatory, The University of Warsaw,
Al. Ujazdowskie 4,
00-478
Warsaw, Poland
20
Aix Marseille Université, CNRS/IN2P3, CPPM,
Marseille, France
21
Instytut Fizyki Ja̧drowej PAN,
ul. Radzikowskiego 152,
31-342
Kraków, Poland
22
Funded by EU FP7 Marie Curie, grant agreement No. PIEF-GA-2012-332350
23
School of Physics, University of the Witwatersrand,
1 Jan Smuts Avenue, Braamfontein,
Johannesburg
2050, South Africa
24
Laboratoire d’Annecy-le-Vieux de Physique des Particules, Université Savoie Mont-Blanc, CNRS/IN2P3,
74941
Annecy-le-Vieux, France
25
Landessternwarte, Universität Heidelberg,
Königstuhl,
69117
Heidelberg, Germany
26
Université Bordeaux, CNRS/IN2P3, Centre d’Études Nucléaires de Bordeaux Gradignan,
33175
Gradignan, France
27
Oskar Klein Centre, Department of Physics, Stockholm University, Albanova University Center,
10691
Stockholm, Sweden
28
Wallenberg Academy Fellow
29
Institut für Astronomie und Astrophysik, Universität Tübingen,
Sand 1,
72076
Tübingen, Germany
30
Laboratoire Leprince-Ringuet, Ecole Polytechnique, CNRS/IN2P3,
91128
Palaiseau, France
31
APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonne Paris Cité,
10, rue Alice Domon et Léonie Duquet,
75205
Paris Cedex 13, France
32
Univ. Grenoble Alpes, CNRS, IPAG,
38000
Grenoble, France
33
Department of Physics and Astronomy, The University of Leicester,
University Road,
Leicester
LE1 7RH, UK
34
Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences,
ul. Bartycka 18,
00-716
Warsaw, Poland
35
Institut für Physik und Astronomie, Universität Potsdam,
Karl-Liebknecht-Strasse 24/25,
14476
Potsdam, Germany
36
Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen Centre for Astroparticle Physics,
Erwin-Rommel-Str. 1,
91058
Erlangen, Germany
37
DESY,
15738
Zeuthen, Germany
38
Obserwatorium Astronomiczne, Uniwersytet Jagielloński,
ul. Orla 171, 30-244
Kraków, Poland
39
Centre for Astronomy, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University,
Grudziadzka 5,
87-100
Torun, Poland
40
Department of Physics, University of the Free State,
PO Box 339,
Bloemfontein 9300, South Africa
41
Heisenberg Fellow (DFG),
ITA Universität Heidelberg, Germany
42
Department of Physics, Rikkyo University,
3-34-1 Nishi-Ikebukuro,
Toshima-ku, Tokyo 171-8501,
Japan
43
Japan Aerpspace Exploration Agency (JAXA), Institute of Space and Astronautical Science (ISAS),
3-1-1 Yoshinodai, Chuo-ku, Sagamihara,
Kanagawa
229-8510, Japan
44
Department of Physics & Astronomy, University of Manitoba,
Winnipeg
MB R3T 2N2, Canada
45
Now at The School of Physics, The University of New South Wales,
Sydney,
2052, Australia
46
Now at Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador São-carlense,
400 - CEP 13566-590,
São Carlos,
SP, Brazil
47
Now at Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University,
Stanford,
CA
94305, USA
★ Corresponding authors: H.E.S.S. Collaboration,
e-mail: contact.hess@hess-experiment.eu
Received:
18
October
2017
Accepted:
8
February
2018
Shell-type supernova remnants (SNRs) are considered prime candidates for the acceleration of Galactic cosmic rays (CRs) up to the knee of the CR spectrum at E ≈ 3 × 1015 eV. Our Milky Way galaxy hosts more than 350 SNRs discovered at radio wavelengths and at high energies, of which 220 fall into the H.E.S.S. Galactic Plane Survey (HGPS) region. Of those, only 50 SNRs are coincident with a H.E.S.S source and in 8 cases the very high-energy (VHE) emission is firmly identified as an SNR. The H.E.S.S. GPS provides us with a legacy for SNR population study in VHE γ-rays and we use this rich data set to extract VHE flux upper limits from all undetected SNRs. Overall, the derived flux upper limits are not in contradiction with the canonical CR paradigm. Assuming this paradigm holds true, we can constrain typical ambient density values around shell-type SNRs to n ≤ 7 cm−3 and electron-to-proton energy fractions above 10 TeV to ϵep ≤ 5 × 10−3. Furthermore, comparisons of VHE with radio luminosities in non-interacting SNRs reveal a behaviour that is in agreement with the theory of magnetic field amplification at shell-type SNRs.
Key words: gamma rays: general / ISM: supernova remnants
© ESO 2018
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.