Issue |
A&A
Volume 642, October 2020
|
|
---|---|---|
Article Number | L12 | |
Number of page(s) | 4 | |
Section | Letters to the Editor | |
DOI | https://doi.org/10.1051/0004-6361/202039425 | |
Published online | 08 October 2020 |
Letter to the Editor
An interesting case of the formation and evolution of a barred galaxy in the cosmological context
Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, Bartycka 18, 00-716 Warsaw, Poland
e-mail: lokas@camk.edu.pl
Received:
14
September
2020
Accepted:
23
September
2020
Elongated, bar-like galaxies without a significant disk component, with little rotation support and no gas, often form as a result of tidal interactions with a galaxy cluster, as was recently demonstrated using the IllustrisTNG-100 simulation. Galaxies that exhibit similar properties are, however, also found to be infalling into the cluster for the first time. We use the same simulation to study in detail the history of such a galaxy over cosmic time in order to determine its origin. The bar appears to be triggered at t = 6.8 Gyr by the combined effect of the last significant merger with a subhalo and the first passage of another dwarf satellite, both ten times less massive than the galaxy. The satellites deposit all their gas in the galaxy, contributing to its third and last star-formation episode, which perturbs the disk and may also contribute to the formation of the bar. The galaxy then starts to lose its gas and dark matter due to its passage near a group of more massive galaxies. The strongest interaction involves a galaxy 22 times more massive, leaving the barred galaxy with no gas and half of its maximum dark matter mass. During this time, the bar grows steadily, seemingly unaffected by the interactions, although they may have aided its growth by stripping the gas. The studied galaxy, together with two other similar objects briefly discussed in this Letter, suggest the existence of a new class of early-type barred galaxies and thereby demonstrate the importance of interactions in galaxy formation and evolution.
Key words: galaxies: evolution / galaxies: interactions / galaxies: kinematics and dynamics / galaxies: structure / galaxies: clusters: general
© ESO 2020
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.