Issue |
A&A
Volume 635, March 2020
|
|
---|---|---|
Article Number | A63 | |
Number of page(s) | 15 | |
Section | Astrophysical processes | |
DOI | https://doi.org/10.1051/0004-6361/201936977 | |
Published online | 09 March 2020 |
Particle acceleration with anomalous pitch angle scattering in 3D separator reconnection
1
School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
e-mail: alexei.borissov@ed.ac.uk
2
School of Mathematics and Statistics, University of St Andrews, St Andrews KY16 9SS, UK
3
School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, UK
Received:
23
October
2019
Accepted:
9
January
2020
Context. Understanding how the release of stored magnetic energy contributes to the generation of non-thermal high energy particles during solar flares is an important open problem in solar physics. There is a general consensus that magnetic reconnection plays a fundamental role in the energy release and conversion processes taking place during flares. A common approach for investigating how reconnection contributes to particle acceleration is to use test particle calculations in electromagnetic fields derived from numerical magnetohydrodynamic (MHD) simulations of reconnecting magnetic fields. These MHD simulations use anomalous resistivities that are orders of magnitude larger than the Spitzer resistivity that is based on Coulomb collisions. The processes leading to such an enhanced resistivity should also affect the test particles, for example, through pitch angle scattering. This study explores the effect of such a link between the level of resistivity and its impact on particle orbits and builds on a previous study using a 2D MHD simulation of magnetic reconnection.
Aims. This paper aims to extend the previous investigation to a 3D magnetic reconnection configuration and to study the effect on test particle orbits.
Methods. We carried out orbit calculations using a 3D MHD simulation of reconnection in a magnetic field with a magnetic separator. The orbit calculations use the relativistic guiding centre approximation but, crucially, they also include pitch angle scattering using stochastic differential equations. The effects of varying the resistivity and the models for pitch angle scattering on particle orbit trajectories, final positions, energy spectra, final pitch angle distribution, and orbit duration are all studied in detail.
Results. Pitch angle scattering widens highly collimated beams of unscattered orbit trajectories, allowing orbits to access previously unaccessible field lines; this causes final positions to spread along other topological structures which could not be accessed without scattering. Scattered orbit energy spectra are found to be predominantly affected by the level of anomalous resistivity, with the pitch angle scattering model only playing a role in specific, isolated cases. This is in contrast to the study involving a 2D MHD simulation of magnetic reconnection, where pitch angle scattering had a more noticeable effect on the energy spectra. Pitch scattering effects are found to play a crucial role in determining the pitch angle and orbit duration distributions.
Key words: Sun: flares / Sun: X-rays / gamma-rays / magnetic reconnection / scattering / turbulence / magnetohydrodynamics (MHD)
© ESO 2020
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.