Issue |
A&A
Volume 611, March 2018
|
|
---|---|---|
Article Number | A40 | |
Number of page(s) | 14 | |
Section | The Sun | |
DOI | https://doi.org/10.1051/0004-6361/201731915 | |
Published online | 20 March 2018 |
Flare particle acceleration in the interaction of twisted coronal flux ropes
1
School of Mathematics and Statistics, University of St Andrews,
St Andrews,
Fife
KY16 9SS, UK
e-mail: jwt9@st-andrews.ac.uk, awh@st-andrews.ac.uk
2
School of Physics and Astronomy, University of Manchester,
Oxford Road,
Manchester
M13 9PL, UK
e-mail: philippa.browning@manchester.ac.uk
Received:
8
September
2017
Accepted:
22
December
2017
Aim. The aim of this work is to investigate and characterise non-thermal particle behaviour in a three-dimensional (3D) magnetohydrodynamical (MHD) model of unstable multi-threaded flaring coronal loops.
Methods. We have used a numerical scheme which solves the relativistic guiding centre approximation to study the motion of electrons and protons. The scheme uses snapshots from high resolution numerical MHD simulations of coronal loops containing two threads, where a single thread becomes unstable and (in one case) destabilises and merges with an additional thread.
Results. The particle responses to the reconnection and fragmentation in MHD simulations of two loop threads are examined in detail. We illustrate the role played by uniform background resistivity and distinguish this from the role of anomalous resistivity using orbits in an MHD simulation where only one thread becomes unstable without destabilising further loop threads. We examine the (scalable) orbit energy gains and final positions recovered at different stages of a second MHD simulation wherein a secondary loop thread is destabilised by (and merges with) the first thread. We compare these results with other theoretical particle acceleration models in the context of observed energetic particle populations during solar flares.
Key words: Sun: magnetic fields / acceleration of particles / plasmas / Sun: corona / Sun: activity / Sun: particle emission
© ESO 2018
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.