Issue |
A&A
Volume 634, February 2020
|
|
---|---|---|
Article Number | A84 | |
Number of page(s) | 14 | |
Section | Galactic structure, stellar clusters and populations | |
DOI | https://doi.org/10.1051/0004-6361/201937075 | |
Published online | 11 February 2020 |
Neutron-capture elements in dwarf galaxies
II. Challenges for the s- and i-processes at low metallicity⋆
1
Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany
2
Dipartimento di Fisica e Astronomia, Universitá degli Studi di Firenze, Via G. Sansone 1, 50019 Sesto Fiorentino, Italy
e-mail: asa.skuladottir@unifi.it
3
INAF/Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125 Firenze, Italy
4
Department of Physics, Faculty of Science and Engineering, Konan University, 8-9-1 Okamoto, Kobe, Hyogo 658-8501, Japan
5
Monash Centre for Astrophysics, School of Physics and Astronomy, Monash University, VIC 3800, Australia
Received:
7
November
2019
Accepted:
13
December
2019
The slow (s) and intermediate (i) neutron (n) capture processes occur both in asymptotic giant branch (AGB) stars, and in massive stars. To study the build-up of the s- and i-products at low metallicity, we investigate the abundances of Y, Ba, La, Nd, and Eu in 98 stars, at −2.4 < [Fe/H] < −0.9, in the Sculptor dwarf spheroidal galaxy. The chemical enrichment from AGB stars becomes apparent at [Fe/H] ≈ −2 in Sculptor, and causes [Y/Ba], [La/Ba], [Nd/Ba] and [Eu/Ba] to decrease with metallicity, reaching subsolar values at the highest [Fe/H] ≈ −1. To investigate individual nucleosynthetic sites, we compared three n-rich Sculptor stars with theoretical yields. One carbon-enhanced metal-poor (CEMP-no) star with high [Sr, Y, Zr] > +0.7 is best fit with a model of a rapidly-rotating massive star, the second (likely CH star) with the i-process, while the third has no satisfactory fit. For a more general understanding of the build-up of the heavy elements, we calculate for the first time the cumulative contribution of the s- and i-processes to the chemical enrichment in Sculptor, and compare with theoretical predictions. By correcting for the r-process, we derive [Y/Ba]s/i = −0.85 ± 0.16, [La/Ba]s/i = −0.49 ± 0.17, and [Nd/Ba]s/i = −0.48 ± 0.12, in the overall s- and/or i-process in Sculptor. These abundance ratios are within the range of those of CEMP stars in the Milky Way, which have either s- or i-process signatures. The low [Y/Ba]s/i and [La/Ba]s/i that we measure in Sculptor are inconsistent with them arising from the s-process only, but are more compatible with models of the i-process. Thus we conclude that both the s- and i-processes were important for the build-up of n-capture elements in the Sculptor dwarf spheroidal galaxy.
Key words: stars: abundances / stars: chemically peculiar / galaxies: abundances / Galaxy: evolution / galaxies: dwarf / Local Group
© Á. Skúladóttir et al. 2020
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Open Access funding provided by Max Planck Society.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.