Issue |
A&A
Volume 634, February 2020
|
|
---|---|---|
Article Number | A74 | |
Number of page(s) | 10 | |
Section | Cosmology (including clusters of galaxies) | |
DOI | https://doi.org/10.1051/0004-6361/201936683 | |
Published online | 11 February 2020 |
The impact of braiding covariance and in-survey covariance on next-generation galaxy surveys⋆
Université Paris-Saclay, CNRS, Institut d’astrophysique spatiale, 91405 Orsay, France
e-mail: fabien.lacasa@universite-paris-saclay.fr; fabien.lacasa@u-psud.fr
Received:
12
September
2019
Accepted:
16
December
2019
As galaxy surveys improve their precision thanks to lower levels of noise and the push toward small, non-linear scales, the need for accurate covariances beyond the classical Gaussian formula becomes more acute. Here I investigate the analytical implementation and impact of non-Gaussian covariance terms that I had previously derived for the galaxy angular power spectrum. Braiding covariance is such an interesting class of such terms and it gets contributions both from in-survey and super-survey modes, the latter proving difficult to calibrate through simulations. I present an approximation for braiding covariance which speeds up the process of numerical computation. I show that including braiding covariance is a necessary condition for including other non-Gaussian terms, namely the in-survey 2-, 3-, and 4-halo covariance. Indeed these terms yield incorrect covariance matrices with negative eigenvalues if considered on their own. I then move to quantify the impact on parameter constraints, with forecasts for a survey with Euclid-like galaxy density and angular scales. Compared with the Gaussian case, braiding and in-survey covariances significantly increase the error bars on cosmological parameters, in particular by 50% for the dark energy equation of state w. The error bars on the halo occupation distribution (HOD) parameters are also affected between 12% and 39%. Accounting for super-sample covariance (SSC) also increases parameter errors, by 90% for w and between 7% and 64% for HOD. In total, non-Gaussianity increases the error bar on w by 120% (between 15% and 80% for other cosmological parameters) and the error bars on HOD parameters between 17% and 85%. Accounting for the 1-halo trispectrum term on top of SSC, as has been done in some current analyses, is not sufficient for capturing the full non-Gaussian impact: braiding and the rest of in-survey covariance have to be accounted for. Finally, I discuss why the inclusion of non-Gaussianity generally eases up parameter degeneracies, making cosmological constraints more robust for astrophysical uncertainties. I released publicly the data and a Python notebook reproducing the results and plots of the article.
Key words: large-scale structure of Universe / methods: analytical / galaxies: statistics
The data and the Python notebook are available at https://github.com/fabienlacasa/BraidingArticle
© F. Lacasa 2020
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.