Issue |
A&A
Volume 634, February 2020
|
|
---|---|---|
Article Number | L9 | |
Number of page(s) | 7 | |
Section | Letters to the Editor | |
DOI | https://doi.org/10.1051/0004-6361/201936608 | |
Published online | 05 February 2020 |
Letter to the Editor
Effect of metallicity on the detectability of rotational periods in solar-like stars
1
Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany
e-mail: witzke@mps.mpg.de
2
School of Space Research, Kyung Hee University, Yongin, Gyeonggi, 446-701, Republic of Korea
Received:
30
August
2019
Accepted:
24
December
2019
The accurate determination of stellar rotation periods is important for estimating stellar ages and for understanding stellar activity and evolution. While rotation periods can be determined for about thirty thousand stars in the Kepler field, there are over one hundred thousand stars, especially with low photometric variability and irregular pattern of variations, for which rotational periods are unknown. Here we investigate the effect of metallicity on the detectability of rotation periods. This is done by synthesising light curves of hypothetical stars that are identical to our Sun with the exception of the metallicity. These light curves are then used as an input to the period determination algorithms. We find that the success rate for recovering the rotation signal has a minimum close to the solar metallicity value. This can be explained by the compensation effect of facular and spot contributions. In addition, selecting solar-like stars with near-solar effective temperature and photometric variability, and with metallicity between M/H = −0.35 and M/H = 0.35 from the Kepler sample, we analyse the fraction of stars for which rotational periods have been detected as a function of metallicity. In agreement with our theoretical estimate we find a local minimum for the detection fraction close to the solar metallicity. We further report rotation periods of 87 solar-like Kepler stars for the first time.
Key words: stars: variables: general / stars: rotation / stars: fundamental parameters / stars: solar-type
© V. Witzke et al. 2020
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Open Access funding provided by Max Planck Society.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.