Issue |
A&A
Volume 632, December 2019
|
|
---|---|---|
Article Number | L12 | |
Number of page(s) | 9 | |
Section | Letters to the Editor | |
DOI | https://doi.org/10.1051/0004-6361/201936750 | |
Published online | 11 December 2019 |
Letter to the Editor
Multiple nitrogen reservoirs in a protoplanetary disk at the epoch of comet and giant planet formation
1
Univ. Grenoble Alpes, CNRS, IPAG, 38000 Grenoble, France
e-mail: pierre.hily-blant@univ-grenoble-alpes.fr
2
IRAM, 300 Rue de la Piscine, Grenoble, France
3
Chester F. Carlson Center for Imaging Science, School of Physics & Astronomy, and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623, USA
Received:
20
September
2019
Accepted:
4
November
2019
The isotopic ratio of nitrogen measured in primitive Solar System bodies shows a broad range of values, the origin of which remains unknown. One key question is whether these isotopic reservoirs of nitrogen predate the comet formation stage or are posterior to it. Another central question is elucidating the processes that can produce the observed variations in the 14N/15N isotopic ratio. Disks that orbit pre-main-sequence (T Tauri) stars provide unique opportunities for observing the chemical content of analogs of the protosolar nebula and therefore for building a comprehensive scenario that can explain the origin of nitrogen in the Solar System and in planet-forming disks. With ALMA, it has become possible to measure isotopic ratios of nitrogen-bearing species in such environments. We present spectrally and spatially resolved observations of the hyperfine structure of the 4−3 rotational transition of HCN and its main isotopologs H13CN and HC15N in the disk orbiting the 8 Myr old T Tauri star TW Hya. The sensitivity allows directly measuring the HCN/H13CN and HCN/HC15N abundance ratios with minimal assumptions. Averaged spatially over the disks, the ratios are 86 ± 4 and 223 ± 21, respectively. The latter value is significantly lower than the CN/C15N ratio of 323 ± 30 in this disk and thus provides the first evidence that two isotopic reservoirs of nitrogen are present in a disk at the stage of giant planet and comet formation. Furthermore, we find clear evidence for an increase in the ratio of HCN to HC15N with radius. The ratio in the outer disk, at 45 au, is 339 ± 28, in excellent agreement with direct measurements in the local interstellar medium, and with the bulk nitrogen isotopic ratio predicted from galactic evolution calculations. In the comet formation region at r = 20 au, the ratio is a factor ≈3 lower, 121 ± 11. This radial increase qualitatively agrees with the scenario in which selective photodissociation of N2 is the dominant fractionation process. However, our isotopic ratios and kinetic temperature of the HCN-emitting layers quantitatively disagree with models of nitrogen chemistry in disks.
Key words: comets: general / protoplanetary disks
© P. Hily-Blant et al. 2019
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.