Issue |
A&A
Volume 632, December 2019
|
|
---|---|---|
Article Number | A5 | |
Number of page(s) | 17 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/201936342 | |
Published online | 25 November 2019 |
Low dust emissivities and radial variations in the envelopes of Class 0 protostars: possible signature of early grain growth
1
AIM, CEA, CNRS, Université Paris-Saclay, Université Paris Diderot, Sorbonne Paris Cité,
91191 Gif-sur-Yvette, France
e-mail: maud.galametz@cea.fr
2
Harvard-Smithsonian Center for Astrophysics,
Cambridge, MA 02138, USA
3
ESO, Karl Schwarzschild Strasse 2,
85748 Garching bei München, Germany
4
INAF, Osservatorio Astrofisico di Arcetri,
Largo E. Fermi 5, 50125 Firenze, Italy
5
Max-Planck-Institut für Radioastronomie,
Auf dem Hügel 69, 53121 Bonn, Germany
Received:
18
July
2019
Accepted:
2
October
2019
Context. Analyzing the properties of dust and its evolution in the early phases of star formation is crucial to put constraints on the collapse and accretion processes as well as on the pristine properties of planet-forming seeds.
Aims. In this paper, we aim to investigate the variations of the dust grain size in the envelopes of the youngest protostars.
Methods. We analyzed Plateau de Bure interferometric observations at 1.3 and 3.2 mm for 12 Class 0 protostars obtained as part of the CALYPSO survey. We performed our analysis in the visibility domain and derived dust emissivity index (β1−3mm) profiles as a function of the envelope radius at 200–2000 au scales.
Results. Most of the protostellar envelopes show low dust emissivity indices decreasing toward the central regions. The decreasing trend remains after correction of the (potentially optically thick) central region emission, with surprisingly low β1−3mm < 1 values across most of the envelope radii of NGC 1333-IRAS 4A, NGC 1333-IRAS 4B, SVS13B, and Serpens-SMM4.
Conclusions. We discuss the various processes that could explain such low and varying dust emissivity indices at envelope radii 200–2000 au. Our observations of extremely low dust emissivity indices could trace the presence of large (millimeter-size) grains in Class 0 envelopes, in which case our results would point to a radial increase of the dust grain size toward the inner envelope regions. While it is expected that large grains in young protostellar envelopes could be built via grain growth and coagulation, we stress that the typical timescales required to build millimeter grains in current coagulation models are at odds with the youth of our Class 0 protostars. Additional variations in the dust composition could also partly contribute to the low β1−3mm we observe. We find that the steepness of the β1−3mm radial gradient depends strongly on the envelope mass, which might favor a scenario in which large grains are built in high-density protostellar disks and transported to the intermediate envelope radii, for example with the help of outflows and winds.
Key words: stars: protostars / stars: formation / circumstellar matter / dust, extinction / techniques: interferometric / radio continuum: ISM
© M. Galametz et al. 2019
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.