Issue |
A&A
Volume 627, July 2019
|
|
---|---|---|
Article Number | A92 | |
Number of page(s) | 23 | |
Section | Astrophysical processes | |
DOI | https://doi.org/10.1051/0004-6361/201935406 | |
Published online | 05 July 2019 |
Gravitational waves from bodies orbiting the Galactic center black hole and their detectability by LISA
1
Laboratoire Univers et Théories, Observatoire de Paris, Université PSL, CNRS, Université Paris Diderot, Sorbonne Paris Cité, 5 Place Jules Janssen, 92190 Meudon, France
e-mail: eric.gourgoulhon@obspm.fr
2
Laboratoire d’Études Spatiales et d’Instrumentation en Astrophysique, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université Paris Diderot, Sorbonne Paris Cité, 5 Place Jules Janssen, 92190 Meudon, France
3
School of Mathematics and Statistics, University College Dublin, Belfield, Dublin 4, Ireland
Received:
5
March
2019
Accepted:
29
May
2019
Aims. We present the first fully relativistic study of gravitational radiation from bodies in circular equatorial orbits around the massive black hole at the Galactic center, Sgr A* and we assess the detectability of various kinds of objects by the gravitational wave detector LISA.
Methods. Our computations are based on the theory of perturbations of the Kerr spacetime and take into account the Roche limit induced by tidal forces in the Kerr metric. The signal-to-noise ratio in the LISA detector, as well as the time spent in LISA band, are evaluated. We have implemented all the computational tools in an open-source SageMath package, within the Black Hole Perturbation Toolkit framework.
Results. We find that white dwarfs, neutrons stars, stellar black holes, primordial black holes of mass larger than 10−4 M⊙, main-sequence stars of mass lower than ∼2.5 M⊙, and brown dwarfs orbiting Sgr A* are all detectable in one year of LISA data with a signal-to-noise ratio above 10 for at least 105 years in the slow inspiral towards either the innermost stable circular orbit (compact objects) or the Roche limit (main-sequence stars and brown dwarfs). The longest times in-band, of the order of 106 years, are achieved for primordial black holes of mass ∼10−3 M⊙ down to 10−5 M⊙, depending on the spin of Sgr A*, as well as for brown dwarfs, just followed by white dwarfs and low mass main-sequence stars. The long time in-band of these objects makes Sgr A* a valuable target for LISA. We also consider bodies on close circular orbits around the massive black hole in the nucleus of the nearby galaxy M 32 and find that, among them, compact objects and brown dwarfs stay for 103–104 years in LISA band with a one-year signal-to-noise ratio above ten.
Key words: gravitational waves / black hole physics / Galaxy: center / stars: low-mass / brown dwarfs / stars: black holes
© E. Gourgoulhon et al. 2019
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.