Issue |
A&A
Volume 619, November 2018
|
|
---|---|---|
Article Number | A56 | |
Number of page(s) | 13 | |
Section | Astronomical instrumentation | |
DOI | https://doi.org/10.1051/0004-6361/201833685 | |
Published online | 06 November 2018 |
Assessing and mitigating alignment defects of the pyramid wavefront sensor: a translation insensitive control method
1
LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Univ. Paris Diderot, Sorbonne Paris Cité, 5 place Jules Janssen, 92195 Meudon, France
e-mail: vincent.deo@obspm.fr
2
GEPI, Observatoire de Paris, Université PSL, CNRS, 5 place Jules Janssen, 92195 Meudon, France
Received:
20
June
2018
Accepted:
20
August
2018
The pyramid wavefront sensor (PWFS) is the currently preferred design for adaptive optics (AO) systems for extremely large telescopes, as focal plane wavefront sensing bears potential for a large intrinsic sensitivity gain when compared to Shack–Hartmann (SH) sensors. Yet, obtaining a high quality pyramidal prism and a model-consistent assembly remains a critical design factor. We demonstrate that the traditional gradient sensing controller is extremely sensitive to prism shape defects and assembly misalignments. We show that even optimal registration of quadrants on the detector may be insufficient to prevent misalignment induced performance loss through a theoretical analysis of the impact of detection plane quadrants sampling errors and individual translations, which may be induced by a variety of mechanical defects. These misalignments displace wavefront information to terms not included in the conventional gradient-like slopes maps and high spatial frequencies become invisible to the sole X− and Y− axis differences. We introduce expanded space control (ESC) for quad-cell signal by generalizing output measurements of the PWFS and demonstrate its insensitivity to misalignment-induced information loss, therefore dramatically relaxing machining and alignment constraints for PWFS engineering. This work presents the theoretical developments leading to ESC design, along with validating performance and robustness results, both in end-to-end numerical simulations and on a PWFS demonstrator bench at LESIA.
Key words: instrumentation: adaptive optics / techniques: high angular resolution / telescopes
© ESO 2018
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.