Issue |
A&A
Volume 619, November 2018
|
|
---|---|---|
Article Number | A72 | |
Number of page(s) | 18 | |
Section | Galactic structure, stellar clusters and populations | |
DOI | https://doi.org/10.1051/0004-6361/201833494 | |
Published online | 13 November 2018 |
Riding the kinematic waves in the Milky Way disk with Gaia⋆,⋆⋆
Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona (IEEC-UB), Martí i Franquès 1, 08028 Barcelona, Spain
e-mail: pramos@fqa.ub.edu
Received:
24
May
2018
Accepted:
27
July
2018
Context. Gaia DR2 has delivered full-sky six-dimensional measurements for millions of stars, and the quest to understand the dynamics of our Galaxy has entered a new phase.
Aims. Our aim is to reveal and characterise the kinematic substructure of the different Galactic neighbourhoods, to form a picture of their spatial evolution that can be used to infer the Galactic potential, its evolution, and its components.
Methods. We take approximately 5 million stars in the Galactic disk from the Gaia DR2 catalogue and build the velocity distribution in different Galactic neighbourhoods distributed along 5 kpc in Galactic radius and azimuth. We decompose their distribution of stars in the VR–Vϕ plane with the wavelet transformation and asses the statistical significance of the structures found.
Results. We detect distinct kinematic substructures (arches and more rounded groups) that diminish their azimuthal velocity as a function of Galactic radius in a continuous way, connecting volumes up to 3 kpc apart in some cases. The average rate of decrease is ∼23 km s−1 kpc−1. In azimuth, the variations are much smaller. We also observe different behaviours: some approximately conserve their vertical angular momentum with radius (e.g. Hercules), while others seem to have nearly constant kinetic energy (e.g. Sirius). These two trends are consistent with the approximate predictions of resonances and phase mixing, respectively. Besides, the overall spatial evolution of Hercules is consistent with being related to the outer Lindblad resonance of the Galactic bar. In addition, we detect new kinematic structures that only appear at either inner or outer Galactic radius, different from the solar neighbourhood.
Conclusions. The strong and distinct variation observed for each kinematic substructure with position in the Galaxy, along with the characterisation of extrasolar moving groups, will allow to better model the dynamical processes affecting the velocity distributions.
Key words: Galaxy: kinematics and dynamics / Galaxy: disk / Galaxy: structure / solar neighborhood
Table B.1 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/619/A72
Movies associated to Figs. B.1–B.5 are available at https://www.aanda.org
© ESO 2018
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.