Issue |
A&A
Volume 618, October 2018
|
|
---|---|---|
Article Number | A42 | |
Number of page(s) | 20 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361/201833312 | |
Published online | 11 October 2018 |
The TROY project
II. Multi-technique constraints on exotrojans in nine planetary systems★,★★,★★★
1
European Southern Observatory (ESO), Alonso de Cordova 3107,
Vitacura Casilla 19001,
Santiago
19, Chile
e-mail: jlillobox@eso.org
2
Physics Institute, Space Research and Planetary Sciences, Center for Space and Habitability – NCCR PlanetS, University of Bern,
Bern, Switzerland
3
Instituto de Astrofísica de Canarias (IAC),
38200
La Laguna,
Tenerife, Spain
4
Departmento Astrofísica, Universidad de La Laguna (ULL),
38206
La Laguna,
Tenerife, Spain
5
Sub-department of Astrophysics, Department of Physics, University of Oxford,
Oxford
OX1 3RH, UK
6
Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP,
Rua das Estrelas,
4150-762
Porto, Portugal
7
Leibniz-Institut für Astrophysik Potsdam,
An der Sternwarte 16,
14482
Potsdam, Germany
8
IMCCE, Observatoire de Paris – PSL Research University, UPMC University Paris 06, University Lille 1, CNRS,
77 Avenue Denfert-Rochereau,
75014
Paris, France
9
Department of Physics, University of Coimbra,
3004-516
Coimbra, Portugal
10
CIDMA, Departamento de Física, Universidade de Aveiro, Campus de Santiago,
3810-193
Aveiro, Portugal
11
Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto,
Porto, Portugal
12
Space Research Institute, Austrian Academy of Sciences,
Schmiedlstr. 6,
8042
Graz, Austria
13
ESO,
Karl Schwarzschild Strasse 2,
85748
Garching, Germany
14
Departmento de Astrofísica, Centro de Astrobiología (CSIC-INTA),
ESAC Campus 28692 Villanueva de la Cañada,
Madrid, Spain
Received:
26
April
2018
Accepted:
27
June
2018
Context. Co-orbital bodies are the byproduct of planet formation and evolution, as we know from the solar system. Although planet-size co-orbitals do not exists in our planetary system, dynamical studies show that they can remain stable for long periods of time in the gravitational well of massive planets. Should they exist, their detection is feasible with the current instrumentation.
Aims. In this paper, we present new ground-based observations searching for these bodies co-orbiting with nine close-in (P < 5 days) planets, using various observing techniques. The combination of all of these techniques allows us to restrict the parameter space of any possible trojan in the system.
Methods. We used multi-technique observations, comprised of radial velocity, precision photometry, and transit timing variations, both newly acquired in the context of the TROY project and publicly available, to constrain the presence of planet-size trojans in the Lagrangian points of nine known exoplanets.
Results. We find no clear evidence of trojans in these nine systems through any of the techniques used down to the precision of the observations. However, this allows us to constrain the presence of any potential trojan in the system, especially in the trojan mass or radius vs. libration amplitude plane. In particular, we can set upper mass limits in the super-Earth mass regime for six of the studied systems.
Key words: planets and satellites: gaseous planets / planets and satellites: fundamental parameters / minor planets, asteroids: general / techniques: radial velocities / techniques: photometric
Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).
© ESO 2018
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.