Issue |
A&A
Volume 622, February 2019
|
|
---|---|---|
Article Number | A81 | |
Number of page(s) | 21 | |
Section | Catalogs and data | |
DOI | https://doi.org/10.1051/0004-6361/201834194 | |
Published online | 31 January 2019 |
Ephemeris refinement of 21 hot Jupiter exoplanets with high timing uncertainties⋆
1
Leibniz-Institut für Astrophysik Potsdam, An der Sternwarte 16, 14482 Potsdam, Germany
e-mail: mmallonn@aip.de
2
Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark
3
Institut de Ciéncies de l’Espai (ICE, CSIC), Campus UAB, Carrer de Can Magrans s/n, 08193 Cerdanyola del Vallès, Spain
4
Institut d’Estudis Espacials de Catalunya (IEEC), C/Gran Capitá 2-4, Edif. Nexus 08034 Barcelona, Spain
5
Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Paseo del Bosque, B1900FWA La Plata, Argentina
6
Instituto de Astrofísica de La Plata (CCT-La Plata, CONICET-UNLP), Paseo del Bosque, B1900FWA La Plata, Argentina
7
Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, NJ 08544, USA
8
Dept. of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
9
Center of Astro-Engineering UC, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, 7820436 Macul, Santiago, Chile
10
Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, 7820436 Macul, Santiago, Chile
11
Millennium Institute of Astrophysics, Av. Vicuña Mackenna 4860, 782-0436 Macul, Santiago, Chile
12
Observatoire des Baronnies provencales, Observatoire Astronomique, 05150 Moydans, France
13
Observatory Puig d’Agulles, Carrer Riera 1, 08759 Vallirana, Spain
14
Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany
15
NASA Goddard Space Flight Center, Exoplanets and Stellar Astrophysics Laboratory, Greenbelt, MD 20771, USA
16
Emory University Department of Physics, 400 Dowman Drive, Suite N218, Atlanta, GA 30322, USA
17
Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
18
Rarotonga Observatory, PO Box 876, Rarotonga, Cook Islands
19
La Vara, Valdes Observatory, 33784 Muñas de Arriba, Valdés, Asturias, Spain
20
Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011, PR China
21
Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, Kunming 650216, PR China
22
University of Chinese Academy of Sciences, Beijing 100049, PR China
23
Observatori Astronòmic Albanyà, Camí de Bassegoda s/n, 17733 Albanyà, Spain
24
Observatoire Astronomique de Vaison, 84110 Vaison la Romaine, France
25
National Youth Space Center, 59567 Goheung, Jeollanam-do, South Korea
26
Space Research Institute, Austrian Academy of Sciences, Schmiedlstr. 6, 8042 Graz, Austria
27
Anunaki Observatory, Calle de los Llanos, 28410 Manzanares el Real, Spain
28
School of Physical Sciences, The Open University, Milton Keynes MK7 6AA, UK
29
Gruppo Astrofili Salese “Galileo Galilei”, Via G. Ferraris 1, 30036 Santa Maria di Sala (VE), Italy
30
Las Cumbres Observatory, 6740 Cortona Dr., Suite 102, Santa Barbara, CA 93117, USA
31
Special Astrophysical Observatory, Russian Academy of Sciences, Nizhnij Arkhyz 369167, Russia
32
Central Astronomical Observatory at Pulkovo of Russian Academy of Sciences, Pulkovskoje shosse d. 65, St., Petersburg 196140, Russia
Received:
8
November
2018
Accepted:
14
December
2018
Transit events of extrasolar planets offer a wealth of information for planetary characterization. However, for many known targets, the uncertainty of their predicted transit windows prohibits an accurate scheduling of follow-up observations. In this work, we refine the ephemerides of 21 hot Jupiter exoplanets with the largest timing uncertainties. We collected 120 professional and amateur transit light curves of the targets of interest, observed with a range of telescopes of 0.3 m–2.2 m, and analyzed them along with the timing information of the planets discovery papers. In the case of WASP-117b, we measured a timing deviation compared to the known ephemeris of about 3.5 h, and for HAT-P-29b and HAT-P-31b the deviation amounted to about 2 h and more. For all targets, the new ephemeris predicts transit timings with uncertainties of less than 6 min in the year 2018 and less than 13 min until 2025. Thus, our results allow for an accurate scheduling of follow-up observations in the next decade.
Key words: methods: observational / techniques: photometric / planets and satellites: fundamental parameters
Observational lightcurves are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/622/A81
© ESO 2019
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.