Issue |
A&A
Volume 615, July 2018
|
|
---|---|---|
Article Number | L2 | |
Number of page(s) | 10 | |
Section | Letters to the Editor | |
DOI | https://doi.org/10.1051/0004-6361/201832830 | |
Published online | 06 July 2018 |
Letter to the Editor
From interstellar carbon monosulfide to methyl mercaptan: paths of least resistance
Institute for Theoretical Chemistry, University Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
e-mail: a.l.m.lamberts@lic.leidenuniv.nl
Received:
14
February
2018
Accepted:
20
May
2018
The 29 reactions linking carbon monosulfide (CS) to methyl mercaptan (CH3SH) via ten intermediate radicals and molecules have been characterized with relevance to surface chemistry in cold interstellar ices. More intermediate species than previously considered are found likely to be present in these ices, such as trans- and cis-HCSH. Both activation and reaction energies have been calculated, along with low-temperature (T > 45 K) rate constants for the radical-neutral reactions. For barrierless radical-radical reactions on the other hand, branching ratios have been determined. The combination of these two sets of information provides, for the first time, quantitative information on the full H + CS reaction network. Early on in this network, that is, early on in the lifetime of an interstellar cloud, HCS is the main radical, while later on this becomes first CH2SH and finally CH3S.
Key words: astrochemistry / ISM: clouds / solid state: volatile / molecular processes
© ESO 2018
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.