Issue |
A&A
Volume 608, December 2017
|
|
---|---|---|
Article Number | A102 | |
Number of page(s) | 19 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/201628508 | |
Published online | 12 December 2017 |
Squeezed between shells? The origin of the Lupus I molecular cloud
II. APEX CO and GASS H i observations⋆,⋆⋆
1 Universitäts-Sternwarte München, Ludwig-Maximilians-Universität, Scheinerstr. 1, 81679 München, Germany
e-mail: bengac@usm.uni-muenchen.de, roccatagliata@arcetri.astro.it
2 INAF–Osservatorio Astrofisico di Arcetri, L.go E. Fermi 5, 50125 Firenze, Italy
3 Max-Planck-Institut für extraterrestrische Physik, Postfach 1312, 85741 Garching, Germany
4 Excellence Cluster Universe, Boltzmannstrasse 2, 85748 Garching, Germany
5 School of Mathematics & Physics, Private Bag 37, University of Tasmania, Hobart 7001, Australia
6 Centre for Astrophysics Research, School of Physics, Astronomy and Mathematics, University of Hertfordshire, College Lane, Hatfield, Hertfordshire AL10 9AB, UK
Received: 14 March 2016
Accepted: 13 October 2017
Context. Lupus I cloud is found between the Upper Scorpius (USco) and Upper Centaurus-Lupus (UCL) subgroups of the Scorpius-Centaurus OB association, where the expanding USco H I shell appears to interact with a bubble currently driven by the winds of the remaining B stars of UCL.
Aims. We investigate whether the Lupus I molecular could have formed in a colliding flow, and in particular, how the kinematics of the cloud might have been influenced by the larger scale gas dynamics.
Methods. We performed APEX 13CO(2–1)and C18O(2–1) line observations of three distinct parts of Lupus I that provide kinematic information on the cloud at high angular and spectral resolution. We compare those results to the atomic hydrogen data from the GASS H i survey and our dust emission results presented in the previous paper. Based on the velocity information, we present a geometric model for the interaction zone between the USco shell and the UCL wind bubble.
Results. We present evidence that the molecular gas of Lupus Iis tightly linked to the atomic material of the USco shell. The CO emission in Lupus Iis found mainly at velocities between vLSR = 3–6 km s-1, which is in the same range as the H i velocities. Thus, the molecular cloud is co-moving with the expanding USco atomic H i shell. The gas in the cloud shows a complex kinematic structure with several line-of-sight components that overlay each other. The nonthermal velocity dispersion is in the transonic regime in all parts of the cloud and could be injected by external compression. Our observations and the derived geometric model agree with a scenario in which Lupus Iis located in the interaction zone between the USco shell and the UCL wind bubble.
Conclusions. The kinematics observations are consistent with a scenario in which the Lupus Icloud formed via shell instabilities. The particular location of Lupus I between USco and UCL suggests that counterpressure from the UCL wind bubble and pre-existing density enhancements, perhaps left over from the gas stream that formed the stellar subgroups, may have played a role in its formation.
Key words: ISM: bubbles / ISM: clouds / ISM: kinematics and dynamics / ISM: structure / ISM: molecules / radio lines: ISM
This publication is based on data acquired with the Atacama Pathfinder Experiment (APEX), which is a collaboration between the Max-Planck-Institut fur Radioastronomie, the European Southern Observatory, and the Onsala Space Observatory.
The 13CO(2–1) and C18O(2–1) spectral cubes are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/608/A102
© ESO, 2017
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.