Issue |
A&A
Volume 598, February 2017
|
|
---|---|---|
Article Number | L10 | |
Number of page(s) | 6 | |
Section | Letters | |
DOI | https://doi.org/10.1051/0004-6361/201630272 | |
Published online | 20 February 2017 |
An in-depth spectroscopic examination of molecular bands from 3D hydrodynamical model atmospheres
II. Carbon-enhanced metal-poor 3D model atmospheres
1 GEPI, Observatoire de Paris, PSL Research University, CNRS, Université Paris Diderot, Sorbonne Paris Cité, place Jules Janssen, 92190 Meudon, France
e-mail: andrew.gallagher@obspm.fr
2 Zentrum für Astrononmie der Universität Heidelberg, Landessternwarte, Königstuhl 12, 69117 Heidelberg, Germany
3 Leibniz-Institut für Astrophysik Potsdam, An der Sternwarte 16, 14482 Potsdam, Germany
4 Laboratoire Univers et Particules de Montpellier, LUPM, Université de Montpellier, CNRS, 34095 Montpellier Cedex 5, France
Received: 16 December 2016
Accepted: 30 January 2017
Context. Tighter constraints on metal-poor stars we observe are needed to better understand the chemical processes of the early Universe. Computing a stellar spectrum in 3D allows one to model complex stellar behaviours, which cannot be replicated in 1D.
Aims. We examine the effect that the intrinsic CNO abundances have on a 3D model structure and the resulting 3D spectrum synthesis.
Methods. Model atmospheres were computed in 3D for three distinct CNO chemical compositions using the CO5BOLD model atmosphere code, and their internal structures were examined. Synthetic spectra were computed from these models using Linfor3D and they were compared. New 3D abundance corrections for the G-band and a selection of UV OH lines were also computed.
Results. The varying CNO abundances change the metal content of the 3D models. This had an effect on the model structure and the resulting synthesis. However, it was found that the C/O ratio had a larger effect than the overall metal content of a model.
Conclusions. Our results suggest that varying the C/O ratio has a substantial impact on the internal structure of the 3D model, even in the hot turn-off star models explored here. This suggests that bespoke 3D models, for specific CNO abundances should be sought. Such effects are not seen in 1D at these temperature regimes.
Key words: hydrodynamics / radiative transfer / line: formation / molecular processes / stars: chemically peculiar
© ESO, 2017
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.