Issue |
A&A
Volume 595, November 2016
|
|
---|---|---|
Article Number | A93 | |
Number of page(s) | 15 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361/201628846 | |
Published online | 07 November 2016 |
Systematic tests for position-dependent additive shear bias
1 University College London, Gower Street, London WC1E 6BT, UK
e-mail: vuitert@ucl.ac.uk
2 Argelander-Institut für Astronomie, Auf dem Hügel 71, 53121 Bonn, Germany
Received: 3 May 2016
Accepted: 11 August 2016
We present new tests to identify stationary position-dependent additive shear biases in weak gravitational lensing data sets. These tests are important diagnostics for currently ongoing and planned cosmic shear surveys, as such biases induce coherent shear patterns that can mimic and potentially bias the cosmic shear signal. The central idea of these tests is to determine the average ellipticity of all galaxies with shape measurements in a grid in the pixel plane. The distribution of the absolute values of these averaged ellipticities can be compared to randomised catalogues; a difference points to systematics in the data. In addition, we introduce a method to quantify the spatial correlation of the additive bias, which suppresses the contribution from cosmic shear and therefore eases the identification of a position-dependent additive shear bias in the data. We apply these tests to the publicly available shear catalogues from the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS) and the Kilo Degree Survey (KiDS) and find evidence for a small but non-negligible residual additive bias at small scales. As this residual bias is smaller than the error on the shear correlation signal at those scales, it is highly unlikely that it causes a significant bias in the published cosmic shear results of CFHTLenS. In CFHTLenS, the amplitude of this systematic signal is consistent with zero in fields where the number of stars used to model the point spread function (PSF) is higher than average, suggesting that the position-dependent additive shear bias originates from undersampled PSF variations across the image.
Key words: gravitational lensing: weak / methods: observational
© ESO 2016
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.