Issue |
A&A
Volume 590, June 2016
|
|
---|---|---|
Article Number | A126 | |
Number of page(s) | 16 | |
Section | Cosmology (including clusters of galaxies) | |
DOI | https://doi.org/10.1051/0004-6361/201527630 | |
Published online | 27 May 2016 |
The relation between mass and concentration in X-ray galaxy clusters at high redshift
1
Dipartimento di Fisica e Astronomia, Università di
Bologna, viale Berti Pichat
6/2, 40127
Bologna,
Italy
e-mail:
stefania.amodeo@obspm.fr
2
INAF, Osservatorio Astronomico di Bologna, via Ranzani 1,
40127
Bologna,
Italy
3
INFN, Sezione di Bologna, viale Berti Pichat 6/2,
40127
Bologna,
Italy
4
Faculty of Physics, Ludwig-Maximilians-Universitaet,
Scheinerstr. 1,
81679
Muenchen,
Germany
5
Excellence Cluster Universe, Boltzmannstr. 2, 85748
Garching,
Germany
Received: 23 October 2015
Accepted: 5 April 2016
Context. Galaxy clusters are the most recent, gravitationally bound products of the hierarchical mass accretion over cosmological scales. How the mass is concentrated is predicted to correlate with the total mass in the halo of the cluster, wherein systems at higher mass are less concentrated at given redshift and, for any given mass, systems with lower concentration are found at higher redshifts.
Aims. Through a spatial and spectral X-ray analysis, we reconstruct the total mass profile of 47 galaxy clusters observed with Chandra in the redshift range 0.4 <z< 1.2, which we selected to exclude major mergers, to investigate the relation between the mass and dark matter concentration and the evolution of this relation with redshift. This sample is the largest investigated so far at z> 0.4, and is well suited to providing the first constraint on the concentration–mass relation at z> 0.7 from X-ray analysis.
Methods. Under the assumption that the distribution of the X-ray emitting gas is spherically symmetric and in the hydrostatic equilibrium with the underlined gravitational potential, we combine the deprojected gas density and spectral temperature profiles through the hydrostatic equilibrium equation to recover the parameters that describe a Navarro-Frenk-White total mass distribution. The comparison with results from weak-lensing analysis reveals a very good agreement both for masses and concentrations. The uncertainties are however too large to make any robust conclusion about the hydrostatic bias of these systems.
Results. The distribution of concentrations is well approximated by a log-normal function in all the mass and redshift ranges investigated. The relation is well described by the form c ∝ MB(1 + z)C with B = −0.50 ± 0.20, C = 0.12 ± 0.61 (at 68.3% confidence). This relation is slightly steeper than that predicted by numerical simulations (B ~ −0.1) and does not show any evident redshift evolution. We obtain the first constraints on the properties of the concentration–mass relation at z> 0.7 from X-ray data, showing a reasonable good agreement with recent numerical predictions.
Key words: galaxies: clusters: general / intergalactic medium / X-rays: galaxies / cosmology: observations / dark matter
© ESO, 2016
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.