Issue |
A&A
Volume 589, May 2016
|
|
---|---|---|
Article Number | A97 | |
Number of page(s) | 10 | |
Section | Astrophysical processes | |
DOI | https://doi.org/10.1051/0004-6361/201527635 | |
Published online | 19 April 2016 |
Correlation between peak energy and Fourier power density spectrum slope in gamma-ray bursts⋆
1
Department of Physics and Earth SciencesUniversity of Ferrara,
via Saragat 1,
44122
Ferrara,
Italy
e-mail:
dichiara@fe.infn.it
2
ICRANet, P.zza della Repubblica 10, 65122
Pescara,
Italy
3
INAF–Istituto di Astrofisica Spaziale e Fisica Cosmica Bologna,
via Gobetti 101, 40129
Bologna,
Italy
4
Harvard-Smithsonian Center for Astrophysics, 60 Garden
St., Cambridge,
MA
02138,
USA
5
New York University, Physics department, 4 Washington Place,
New York, NY
10003,
USA
Received: 24 October 2015
Accepted: 7 March 2016
Context. The origin of the gamma–ray burst (GRB) prompt emission still defies explanation, in spite of recent progress made, for example, on the occasional presence of a thermal component in the spectrum along with the ubiquitous non-thermal component that is modelled with a Band function. The combination of finite duration and aperiodic modulations make GRBs hard to characterise temporally. Although correlations between GRB luminosity and spectral hardness on one side and time variability on the other side have long been known, the loose and often arbitrary definition of the latter makes the interpretation uncertain.
Aims. We characterise the temporal variability in an objective way and search for a connection with rest-frame spectral properties for a number of well-observed GRBs.
Methods. We studied the individual power density spectra (PDS) of 123 long GRBs with measured redshift, rest-frame peak energy Ep,i of the time-averaged ν Fν spectrum, and well-constrained PDS slope α detected with Swift, Fermi and past spacecraft. The PDS were modelled with a power law either with or without a break adopting a Bayesian Markov chain Monte Carlo technique.
Results. We find a highly significant Ep,i–α anti-correlation. The null hypothesis probability is ~10-9.
Conclusions. In the framework of the internal shock synchrotron model, the Ep,i–α anti-correlation can hardly be reconciled with the predicted Ep,i ∝ Γ-2, unless either variable microphysical parameters of the shocks or continual electron acceleration are assumed. Alternatively, in the context of models based on magnetic reconnection, the PDS slope and Ep,i are linked to the ejecta magnetisation at the dissipation site, so that more magnetised outflows would produce more variable GRB light curves at short timescales (≲1 s), shallower PDS, and higher values of Ep,i.
Key words: gamma-ray burst: general / methods: statistical
Full Table 1 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/589/A97
© ESO, 2016
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.