Issue |
A&A
Volume 562, February 2014
|
|
---|---|---|
Article Number | A61 | |
Number of page(s) | 16 | |
Section | Atomic, molecular, and nuclear data | |
DOI | https://doi.org/10.1051/0004-6361/201322832 | |
Published online | 06 February 2014 |
Isotope selective photodissociation of N2 by the interstellar radiation field and cosmic rays
1
Leiden Observatory, Leiden University,
PO Box 9513,
2300 RA
Leiden,
The Netherlands
e-mail:
heays@strw.leidenuniv.nl
2
Department of Astronomy, University of Michigan,
500 Church Street, Ann Arbor, MI
48109-1042,
USA
3
Max-Planck-Institut für Astronomie (MPIA),
Königstuhl 17,
69117
Heidelberg,
Germany
4
Department of Physics and Astronomy, LaserLaB, VU
University, de Boelelaan
1081, 1081 HV
Amsterdam, The
Netherlands
5
Research School of Physics and Engineering, The Australian
National University, ACT,
0200
Canberra,
Australia
6
Max-Planck Institut für Extraterrestrische Physik (MPE),
Giessenbachstraße.
1, 85748
Garching,
Germany
Received:
11
October
2013
Accepted:
16
December
2013
Context. Photodissociation of 14N2 and 14N 15N occurs in interstellar clouds, circumstellar envelopes, protoplanetary discs, and other environments due to ultraviolet radiation originating from stellar sources and the presence of cosmic rays. This source of N atoms initiates the formation of more complex N-bearing species and may influence their isotopic composition.
Aims. We study the photodissociation rates of 14N 15N by ultraviolet continuum radiation and both isotopologues in a field of cosmic ray induced photons. To determine the effect of these on the isotopic composition of more complex molecules.
Methods. High-resolution theoretical photodissociation cross sections of N2 are used from an accurate and comprehensive quantum-mechanical model of the molecule based on laboratory experiments. A similarly high-resolution spectrum of H2 emission following interactions with cosmic rays has been constructed. The spectroscopic data are used to calculate photodissociation rates which are then input into isotopically differentiated chemical models, describing an interstellar cloud and a protoplanetary disc.
Results. The photodissociation rate of 14N 15N in a Draine field assuming 30 K excitation is 1.73 × 10-10 s-1, within 4% of the rate for 14N2, and the rate due to cosmic ray induced photons assuming an H2 ionisation rate of ζ = 10-16 s-1 is about 10-15 s-1, with up to a factor of 10 difference between isotopologues. Shielding functions for 14N15N by 14N2, H2, and H are presented. Incorporating these into an interstellar cloud model, an enhancement of the atomic 15N/14N ratio over the elemental value is obtained due to the self-shielding of external radiation at an extinction of about 1.5 mag. This effect is larger where assumed grain growth has reduced the opacity of dust to ultraviolet radiation. The transfer of photolytic isotopic fractionation of N and N2 to other molecules is demonstrated to be significant in a protoplanetary disc model with grain growth, and is species dependent with 15N enhancement approaching a factor of 10 for HCN. The cosmic ray induced dissociation of CO is revisited employing a more recent photodissociation cross section, leading to a rate that is ~40% lower than previously calculated.
Key words: cosmic rays / ISM: molecules / protoplanetary disks / photon-dominated region (PDR) / molecular processes / radiation mechanisms: non-thermal
© ESO, 2014
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.