Issue |
A&A
Volume 572, December 2014
|
|
---|---|---|
Article Number | A24 | |
Number of page(s) | 16 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/201423773 | |
Published online | 21 November 2014 |
Observations of nitrogen isotope fractionation in deeply embedded protostars⋆
1
Centre for Star and Planet Formation, Natural History Museum of Denmark,
University of Copenhagen,
Øster Voldgade 5-7,
1350
København K,
Denmark
e-mail:
wampfler@nbi.dk
2
Niels Bohr Institute, University of Copenhagen,
Juliane Maries Vej 30,
2100
København Ø,
Denmark
Received: 7 March 2014
Accepted: 26 July 2014
Context. The terrestrial planets, comets, and meteorites are significantly enriched in 15N compared to the Sun and Jupiter. While the solar and jovian nitrogen isotope ratio is believed to represent the composition of the protosolar nebula, a still unidentified process has caused 15N-enrichment in the solids. Several mechanisms have been proposed to explain the variations, including chemical fractionation. However, observational results that constrain the fractionation models are scarce. While there is evidence of 15N-enrichment in prestellar cores, it is unclear how the signature evolves into the protostellar phases.
Aims. The aim of this study is to measure the 14N/15N ratio around three nearby, embedded low- to intermediate-mass protostars.
Methods. Isotopologues of HCN and HNC were used to probe the 14N/15N ratio. A selection of J = 3−2 and 4–3 transitions of H13CN, HC15N, HN13C, and H15NC was observed with the Atacama Pathfinder EXperiment telescope (APEX). The 14N/15N ratios were derived from the integrated intensities assuming a standard 12C/13C ratio. The assumption of optically thin emission was verified using radiative transfer modeling and hyperfine structure fitting.
Results. Two sources, IRAS 16293A and R CrA IRS7B, show 15N-enrichment by a factor of ~1.5–2.5 in both HCN and HNC with respect to the solar composition. IRAS 16293A falls in the range of typical prestellar core values. Solar composition cannot be excluded for the third source, OMC-3 MMS6. Furthermore, there are indications of a trend toward increasing 14N/15N ratios with increasing outer envelope temperature.
Conclusions. The enhanced 15N abundances in HCN and HNC found in two Class 0 sources (14N /15N ~ 160−290) and the tentative trend toward a temperature-dependent 14N/15N ratio are consistent with the chemical fractionation scenario, but 14N/15N ratios from additional tracers are indispensable for testing the models. Spatially resolved observations are needed to distinguish between chemical fractionation and isotope-selective photochemistry.
Key words: astrochemistry / ISM: abundances / ISM: molecules / stars: formation / stars: general
Appendices are available in electronic form at http://www.aanda.org
© ESO, 2014
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.