Issue |
A&A
Volume 532, August 2011
|
|
---|---|---|
Article Number | A68 | |
Number of page(s) | 9 | |
Section | Astrophysical processes | |
DOI | https://doi.org/10.1051/0004-6361/201117182 | |
Published online | 22 July 2011 |
Particle transport in intense small-scale magnetic turbulence with a mean field
1
UJF-Grenoble 1/CNRS-INSU, Institut de Planétologie et d’Astrophysique de Grenoble (IPAG) UMR 5274, 38041 Grenoble, France
e-mail: illya.plotnikov@obs.ujf-grenoble.fr
2
Institut d’Astrophysique de Paris, CNRS – UPMC, 98bis boulevard Arago, 75014 Paris, France
Received: 3 May 2011
Accepted: 9 June 2011
Various astrophysical studies have motivated the investigation of the transport of high energy particles in magnetic turbulence, either in the source or en route to the observation sites. For strong turbulence and large rigidity, the pitch-angle scattering rate is governed by a simple law involving a mean free path that increases proportionally to the square of the particle energy. In this paper, we show that perpendicular diffusion deviates from this behavior in the presence of a mean field. We propose an exact theoretical derivation of the diffusion coefficients and show that a mean field significantly changes the transverse diffusion even in the presence of a stronger turbulent field. In particular, the transverse diffusion coefficient is shown to reach a finite value at large rigidity instead of increasing proportionally to the square of the particle energy. Our theoretical derivation is corroborated by a dedicated Monte Carlo simulation. We briefly discuss several possible applications in astrophysics.
Key words: magnetic fields / diffusion / scattering / turbulence / methods: analytical / methods: numerical
© ESO, 2011
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.