Issue |
A&A
Volume 528, April 2011
|
|
---|---|---|
Article Number | L9 | |
Number of page(s) | 4 | |
Section | Letters | |
DOI | https://doi.org/10.1051/0004-6361/201016354 | |
Published online | 25 February 2011 |
Letters to the Editor
Using the Sun to estimate Earth-like planets detection capabilities
III. Impact of spots and plages on astrometric detection
UJF-Grenoble 1 / CNRS-INSU, Institut de Planétologie et d’Astrophysique de
Grenoble (IPAG) UMR 5274,
38041
Grenoble,
France
e-mail: Lagrange@obs.ujf-grenoble.fr
Received: 17 December 2010
Accepted: 11 January 2011
Aims. Stellar activity is a potentially important limitation to the detection of low-mass extrasolar planets with indirect methods (radial velocity, photometry, astrometry). In previous papers, using the Sun as a proxy, we investigated the impact of stellar activity (spots, plages, convection) on the detectability of an Earth-mass planet in the habitable zone (HZ) of solar-type stars with radial velocity techniques. We here extend the detectability study to astrometry.
Methods. We used the sunspot and plages properties recorded over one solar cycle to infer the astrometric variations that a Sun-like star seen edge-on, 10 pc away, would exhibit, if covered by such spots/bright structures. We compare the signal to the one expected from the astrometric wobble (0.3 μas) of such a star surrounded by a one Earth-mass planet in the HZ. We also briefly investigate higher levels of activity.
Results. The activity-induced astrometric signal along the equatorial plane has an amplitude of typically less than 0.2 μas (rms = 0.07 μas), lower than the one expected from an Earth-mass planet at 1 AU. Hence, for this level of activity, the detectability is governed by the instrumental precision rather than the activity. We show that for instance a one Earth-mass planet at 1 AU would be detected with a monthly visit during less than five years and an instrumental precision of 0.8 μas. A level of activity five times higher would still allow this detection with a precision of 0.35 μas. We conclude that astrometry is an attractive approach to search for such planets around solar type stars with most levels of stellar activity.
Key words: planetary systems / stars: variables: general / Sun: activity / sunspots / Astrometry
© ESO, 2011
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.