Issue |
A&A
Volume 593, September 2016
|
|
---|---|---|
Article Number | A5 | |
Number of page(s) | 22 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361/201628672 | |
Published online | 29 August 2016 |
Radial velocity fitting challenge⋆,⋆⋆
I. Simulating the data set including realistic stellar radial-velocity signals
1 Observatoire de Genève, Université de
Genève, 51 ch. des
Maillettes, 1290 Versoix, Switzerland
e-mail: xavier.dumusque@unige.ch
2 Harvard-Smithsonian Center for
Astrophysics, 60 Garden Street, Cambridge, Massachusetts
02138,
USA
Received:
8
April
2016
Accepted:
4
June
2016
Context. Stellar signals are the main limitation for precise radial-velocity (RV) measurements. These signals arise from the photosphere of the stars. The m s-1 perturbation created by these signals prevents the detection and mass characterization of small-mass planetary candidates such as Earth-twins. Several methods have been proposed to mitigate stellar signals in RV measurements. However, without precisely knowing the stellar and planetary signals in real observations, it is extremely difficult to test the efficiency of these methods.
Aims. The goal of the RV fitting challenge is to generate simulated RV data including stellar and planetary signals and to perform a blind test within the community to test the efficiency of the different methods proposed to recover planetary signals despite stellar signals.
Methods. In this first paper, we describe the simulation used to model
the measurements of the RV fitting challenge. Each simulated planetary system includes the
signals from instrumental noise, stellar oscillations, granulation, supergranulation,
stellar activity, and observed and simulated planetary systems. In addition to RV
variations, this simulation also models the effects of instrumental noise and stellar
signals on activity observables obtained by HARPS-type high-resolution spectrographs, that
is, the calcium activity index log () and the bisector span and full width at half maximum
of the cross-correlation function.
Results. We publish the 15 systems used for the RV fitting challenge including the details about the planetary systems that were injected into each of them.
Key words: techniques: radial velocities / stars: oscillations / stars: activity / Sun: activity / Sun: faculae, plages / sunspots
Based on observations collected at the La Silla Parana Observatory, ESO (Chile), with the HARPS spectrograph at the 3.6-m telescope.
The simulated data sets are available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/593/A5 and at the wiki of the RV fitting challenge https://rv-challenge.wikispaces.com.
Society in Science – Branco Weiss Fellow (http://www.society-in-science.org).
© ESO, 2016
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.