Open Access
Issue
A&A
Volume 699, July 2025
Article Number A302
Number of page(s) 19
Section Numerical methods and codes
DOI https://doi.org/10.1051/0004-6361/202554735
Published online 16 July 2025
  1. Abbasi Koohpayegani, S., Tejankar, A., & Pirsiavash, H. 2021, arXiv e-prints [arXiv:2105.07269] [Google Scholar]
  2. Akhmetzhanova, A., Mishra-Sharma, S., & Dvorkin, C. 2024, MNRAS, 527, 7459 [Google Scholar]
  3. Assran, M., Caron, M., Misra, I., et al. 2022, arXiv e-prints [arXiv:2204.07141] [Google Scholar]
  4. Assran, M., Duval, Q., Misra, I., et al. 2023, arXiv e-prints [arXiv:2301.08243] [Google Scholar]
  5. Baldi, R. D. 2023, A&A Rev., 31, 3 [Google Scholar]
  6. Balestriero, R., Ibrahim, M., Sobal, V., et al. 2023, arXiv e-prints [arXiv:2304.12210] [Google Scholar]
  7. Banfield, J. K., Wong, O. I., Willett, K. W., et al. 2015, MNRAS, 453, 2326 [Google Scholar]
  8. Bao, H., Dong, L., Piao, S., & Wei, F. 2021, arXiv e-prints [arXiv:2106.08254] [Google Scholar]
  9. Bhatta, G., Gharat, S., Borthakur, A., & Kumar, A. 2024, MNRAS, 528, 976 [Google Scholar]
  10. Bowles, M., Tang, H., Vardoulaki, E., et al. 2023, MNRAS, 522, 2584 [Google Scholar]
  11. Brand, K., Grobler, T. L., Kleynhans, W., et al. 2023, MNRAS, 522, 292 [Google Scholar]
  12. Breiman, L. 2001, Mach. Learn., 45, 5 [Google Scholar]
  13. Cecconello, T., Riggi, S., Becciani, U., et al. 2024, arXiv e-prints [arXiv:2411.14078] [Google Scholar]
  14. Chen, T., Kornblith, S., Norouzi, M., & Hinton, G. 2020, arXiv e-prints [arXiv:2002.05709] [Google Scholar]
  15. Dosovitskiy, A., Beyer, L., Kolesnikov, A., et al. 2020, arXiv e-prints [arXiv:2010.11929] [Google Scholar]
  16. Dubois, J., Fraix-Burnet, D., Moultaka, J., Sharma, P., & Burgarella, D. 2022, A&A, 663, A21 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  17. Dwibedi, D., Aytar, Y., Tompson, J., Sermanet, P., & Zisserman, A. 2021, arXiv e-prints [arXiv:2104.14548] [Google Scholar]
  18. Fanaroff, B. L., & Riley, J. M. 1974, MNRAS, 167, 31P [Google Scholar]
  19. Frosst, N., Papernot, N., & Hinton, G. 2019, arXiv e-prints [arXiv:1902.01889] [Google Scholar]
  20. Galvin, T. J., Huynh, M., Norris, R. P., et al. 2019, PASP, 131, 108009 [Google Scholar]
  21. Galvin, T. J., Huynh, M. T., Norris, R. P., et al. 2020, MNRAS, 497, 2730 [NASA ADS] [CrossRef] [Google Scholar]
  22. Goyal, P., Dollár, P., Girshick, R., et al. 2017, arXiv e-prints [arXiv:1706.02677] [Google Scholar]
  23. Griese, F., Kummer, J., Connor, P. L. S., Brüggen, M., & Rustige, L. 2023, Data in Brief, 47, 108974 [Google Scholar]
  24. Grill, J.-B., Strub, F., Altché, F., et al. 2020, arXiv e-prints [arXiv:2006.07733] [Google Scholar]
  25. Guo, X., Liu, C., Qiu, B., et al. 2022, MNRAS, 517, 1837 [NASA ADS] [CrossRef] [Google Scholar]
  26. Hardcastle, M. J., Horton, M. A., Williams, W. L., et al. 2023, A&A, 678, A151 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  27. He, K., Zhang, X., Ren, S., & Sun, J. 2015, arXiv e-prints [arXiv:1512.03385] [Google Scholar]
  28. Hinton, G. E., & Salakhutdinov, R. R. 2006, Science, 313, 504 [Google Scholar]
  29. Hossain, M. S., Roy, S., Asad, K. M. B., et al. 2023, Proc. Comp. Sci., 222, 601 [Google Scholar]
  30. Huang, Z., Chen, J., Zhang, J., & Shan, H. 2021, arXiv e-prints [arXiv:2111.11821] [Google Scholar]
  31. Huertas-Company, M., Sarmiento, R., & Knapen, J. H. 2023, RAS Techn. Instrum., 2, 441 [Google Scholar]
  32. Kempner, J. C., Blanton, E. L., Clarke, T. E., et al. 2004, in The Riddle of Cooling Flows in Galaxies and Clusters of Galaxies, eds. T. Reiprich, J. Kempner, & N. Soker (Berlin: Springer), 335 [Google Scholar]
  33. Kohonen, T. 2001, Self-Organizing Maps (Berlin: Springer) [Google Scholar]
  34. Lakshminarayanan, B., Pritzel, A., & Blundell, C. 2016, arXiv e-prints [arXiv:1612.01474] [Google Scholar]
  35. Lao, B., Jaiswal, S., Zhao, Z., et al. 2023, Astron. Comp., 44, 100728 [Google Scholar]
  36. Lao, B., Andernach, H., Yang, X., et al. 2025, ApJS, 276, 46 [Google Scholar]
  37. Lloyd, S. 1982, IEEE Trans. Information Theory, 28, 129 [Google Scholar]
  38. Lochner, M., Rudnick, L., Heywood, I., Knowles, K., & Shabala, S. S. 2023, MNRAS, 520, 1439 [Google Scholar]
  39. Loshchilov, I., & Hutter, F. 2016, arXiv e-prints [arXiv:1608.03983] [Google Scholar]
  40. Loshchilov, I., & Hutter, F. 2017, arXiv e-prints [arXiv:1711.05101] [Google Scholar]
  41. Lukic, V., Brüggen, M., Mingo, B., et al. 2019, MNRAS, 487, 1729 [Google Scholar]
  42. Luo, X., Zheng, S., Jiang, Z., et al. 2024, A&A, 683, A104 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  43. Ma, Z., Xu, H., Zhu, J., et al. 2019, ApJS, 240, 34 [NASA ADS] [CrossRef] [Google Scholar]
  44. Maslej-Krešñáková, V., El Bouchefry, K., & Butka, P. 2021, MNRAS, 505, 1464 [Google Scholar]
  45. McInnes, L., Healy, J., & Astels, S. 2017, J. Open Source Softw., 2, 205 [NASA ADS] [CrossRef] [Google Scholar]
  46. McInnes, L., Healy, J., & Melville, J. 2018, arXiv e-prints [arXiv:1802.03426] [Google Scholar]
  47. Mingo, B., Croston, J. H., Hardcastle, M. J., et al. 2019, MNRAS, 488, 2701 [NASA ADS] [CrossRef] [Google Scholar]
  48. Miraghaei, H., & Best, P. N. 2017, MNRAS, 466, 4346 [NASA ADS] [Google Scholar]
  49. Mohale, K., & Lochner, M. 2024, MNRAS, submitted [arXiv:2311.14157] [Google Scholar]
  50. Mostert, R. I. J., Duncan, K. J., Röttgering, H. J. A., et al. 2021, A&A, 645, A89 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  51. Ndung’u, S., Grobler, T., Wijnholds, S. J., Karastoyanova, D., & Azzopardi, G. 2023, New A Rev., 97, 101685 [Google Scholar]
  52. Norris, R. P., Hopkins, A. M., Afonso, J., et al. 2011, PASA, 28, 215 [Google Scholar]
  53. Pérez-Díaz, V. S., Martínez-Galarza, J. R., Caicedo, A., & D’Abrusco, R. 2024, MNRAS, 528, 4852 [Google Scholar]
  54. Ralph, N. O., Norris, R. P., Fang, G., et al. 2019, PASP, 131, 108011 [Google Scholar]
  55. Ren, Y., Pu, J., Yang, Z., et al. 2025, IEEE Trans. Neural Netw. Learn. Syst., 36, 5858 [Google Scholar]
  56. Riggi, S., Cecconello, T., Palazzo, S., et al. 2024, PASA, 41, e085 [Google Scholar]
  57. Rudnick, L. 2021, Galaxies, 9, 85 [NASA ADS] [CrossRef] [Google Scholar]
  58. Russakovsky, O., Deng, J., Su, H., et al. 2014, arXiv e-prints [arXiv:1409.0575] [Google Scholar]
  59. Rustige, L., Kummer, J., Griese, F., et al. 2023, RAS Techn. Instrum., 2, 264 [Google Scholar]
  60. Salakhutdinov, R., & Hinton, G. 2007, Proc. Mach. Learn. Res., 2, 412 [Google Scholar]
  61. Sanger, T. D. 1989, Neural Netw., 2, 459 [Google Scholar]
  62. Sarmiento, R., Huertas-Company, M., Knapen, J. H., et al. 2021, ApJ, 921, 177 [NASA ADS] [CrossRef] [Google Scholar]
  63. Shimwell, T. W., Röttgering, H. J. A., Best, P. N., et al. 2017, A&A, 598, A104 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  64. Shimwell, T. W., Tasse, C., Hardcastle, M. J., et al. 2019, A&A, 622, A1 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  65. Shimwell, T. W., Hardcastle, M. J., Tasse, C., et al. 2022, A&A, 659, A1 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  66. Slijepcevic, I. V., Scaife, A. M. M., Walmsley, M., et al. 2022, MNRAS, 514, 2599 [NASA ADS] [CrossRef] [Google Scholar]
  67. Slijepcevic, I. V., Scaife, A. M. M., Walmsley, M., et al. 2024, RAS Techn. Instrum., 3, 19 [Google Scholar]
  68. Stein, G., Harrington, P., Blaum, J., Medan, T., & Lukic, Z. 2021, arXiv e-prints [arXiv:2110.13151] [Google Scholar]
  69. Stroe, A., Catlett, V., Harwood, J. J., Vernstrom, T., & Mingo, B. 2022, ApJ, 941, 136 [NASA ADS] [CrossRef] [Google Scholar]
  70. Tohill, C., Bamford, S. P., Conselice, C. J., et al. 2024, ApJ, 962, 164 [NASA ADS] [CrossRef] [Google Scholar]
  71. van der Maaten, L., & Hinton, G. 2008, J. Mach. Learn. Res., 9, 2579 [Google Scholar]
  72. Vantyghem, A. N., Galvin, T. J., Sebastian, B., et al. 2024, Astron. Comput., 47, 100824 [Google Scholar]
  73. Vega-Ferrero, J., Huertas-Company, M., Costantin, L., et al. 2024, ApJ, 961, 51 [NASA ADS] [CrossRef] [Google Scholar]
  74. Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. 2004, IEEE Trans. Image Process., 13, 600 [Google Scholar]
  75. Wong, O. I., Garon, A. F., Alger, M. J., et al. 2025, MNRAS, 536, 3488 [Google Scholar]
  76. Wu, C., Wong, O. I., Rudnick, L., et al. 2019, MNRAS, 482, 1211 [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.