Open Access
Issue |
A&A
Volume 699, July 2025
|
|
---|---|---|
Article Number | A168 | |
Number of page(s) | 12 | |
Section | Numerical methods and codes | |
DOI | https://doi.org/10.1051/0004-6361/202453388 | |
Published online | 07 July 2025 |
- Alcock, C., Allsman, R., Alves, D. R., et al. 2000, ApJ, 542, 281 [NASA ADS] [CrossRef] [Google Scholar]
- Bassi, S., Sharma, K., & Gomekar, A. 2021, Front. Astron. Space Sci., 8, 718139 [Google Scholar]
- Becker, I., Pichara, K., Catelan, M., et al. 2020, MNRAS, 493, 2981 [NASA ADS] [CrossRef] [Google Scholar]
- Blundell, C., Cornebise, J., Kavukcuoglu, K., & Wierstra, D. 2015, in International Conference on Machine Learning, PMLR, 1613 [Google Scholar]
- Cabrera-Vives, G., Reyes, I., Förster, F., Estévez, P. A., & Maureira, J.-C. 2016, in 2016 International Joint Conference on Neural Networks (IJCNN), 251 [CrossRef] [Google Scholar]
- Cabrera-Vives, G., Moreno-Cartagena, D., Astorga, N., et al. 2024, A&A, 689, A289 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Carrasco-Davis, R., Cabrera-Vives, G., Förster, F., et al. 2019, PASP, 131, 108006 [NASA ADS] [CrossRef] [Google Scholar]
- Ciucă, I., Kawata, D., Miglio, A., Davies, G. R., & Grand, R. J. 2021, MNRAS, 503, 2814 [Google Scholar]
- Devlin, J., Chang, M.-W., & Lee, K. 2019, in Proceedings of NAACL-HLT, 4171 [Google Scholar]
- Donoso-Oliva, C., Cabrera-Vives, G., Protopapas, P., Carrasco-Davis, R., & Estévez, P. A. 2021, MNRAS, 505, 6069 [CrossRef] [Google Scholar]
- Donoso-Oliva, C., Becker, I., Protopapas, P., et al. 2023, A&A, 670, A54 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Fay, M. P., & Proschan, M. A. 2010, Statist. Surv., 4, 1 [Google Scholar]
- Feast, M. W., Menzies, J. W., Matsunaga, N., & Whitelock, P. A. 2014, Nature, 509, 342 [Google Scholar]
- Gal, Y., & Ghahramani, Z. 2016, in International Conference on Machine Learning, PMLR, 1050 [Google Scholar]
- Gal, Y., Islam, R., & Ghahramani, Z. 2017, in International Conference on Machine Learning, PMLR, 1183 [Google Scholar]
- Ganaie, M. A., Hu, M., Malik, A., Tanveer, M., & Suganthan, P. 2022, Eng. Appl. Artif. Intell., 115, 105151 [CrossRef] [Google Scholar]
- Gawlikowski, J., Tassi, C. R. N., Ali, M., et al. 2023, Artif. Intell. Rev., 56, 1513 [Google Scholar]
- Guo, C., Pleiss, G., Sun, Y., & Weinberger, K. Q. 2017, in International Conference on Machine Learning, PMLR, 1321 [Google Scholar]
- Heinze, A., Tonry, J. L., Denneau, L., et al. 2018, AJ, 156, 241 [NASA ADS] [CrossRef] [Google Scholar]
- Hochreiter, S., & Schmidhuber, J. 1997, Neural Computat., 9, 1735 [Google Scholar]
- Houlsby, N., Huszár, F., Ghahramani, Z., & Lengyel, M. 2011, arXiv e-prints [arXiv:1112.5745] [Google Scholar]
- Huijben, I. A., Kool, W., Paulus, M. B., & Van Sloun, R. J. 2022, IEEE Trans. Pattern Anal. Mach. Intell., 45, 1353 [Google Scholar]
- Ishida, E., Beck, R., González-Gaitán, S., et al. 2019, MNRAS, 483, 2 [NASA ADS] [CrossRef] [Google Scholar]
- Ivezić, Ž., Kahn, S. M., Tyson, J. A., et al. 2019, ApJ, 873, 111 [Google Scholar]
- Jang, E., Gu, S., & Poole, B. 2017, in 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24–26, 2017, Conference Track Proceedings (OpenReview.net) [Google Scholar]
- Karpenka, N. V., Feroz, F., & Hobson, M. 2013, MNRAS, 429, 1278 [NASA ADS] [CrossRef] [Google Scholar]
- Kennamer, N., Ishida, E. E., González-Gaitán, S., et al. 2020, in 2020 IEEE Symp. Ser. Computat. Intell. (SSCI), IEEE, 3115 [Google Scholar]
- Killestein, T., Lyman, J., Steeghs, D., et al. 2021, MNRAS, 503, 4838 [NASA ADS] [CrossRef] [Google Scholar]
- Kingma, D. P., & Ba, J. 2015, in 3rd International Conference on Learning Representations (ICLR), San Diego, California, United States [Google Scholar]
- Lakshminarayanan, B., Pritzel, A., & Blundell, C. 2017, Advances in Neural Information Processing Systems, 30 [Google Scholar]
- Leoni, M., Ishida, E. E., Peloton, J., & Möller, A. 2022, A&A, 663, A13 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Leung, H. W., & Bovy, J. 2023, MNRAS, stad3015 [Google Scholar]
- Mahabal, A., Sheth, K., Gieseke, F., et al. 2017, in 2017 IEEE Symposium Series on Computational Intelligence (SSCI), IEEE, 1 [Google Scholar]
- Martínez-Palomera, J., Förster, F., Protopapas, P., et al. 2018, AJ, 156, 186 [Google Scholar]
- Masci, F. J., Hoffman, D. I., Grillmair, C. J., & Cutri, R. M. 2014, AJ, 148, 21 [NASA ADS] [CrossRef] [Google Scholar]
- Möller, A., & de Boissière, T. 2020, MNRAS, 491, 4277 [CrossRef] [Google Scholar]
- Moreno-Cartagena, D., Cabrera-Vives, G., Protopapas, P., et al. 2023, in Machine Learning for Astrophysics Workshop, 40th International Conference on Machine Learning (ICML), PMLR 202, Honolulu, Hawaii, USA [Google Scholar]
- Morvan, M., Nikolaou, N., Yip, K., & Waldmann, I. 2022, Mach. Learn. Astrophys., 11 [Google Scholar]
- Nadeem, M. S. A., Zucker, J.-D., & Hanczar, B. 2009, in Machine Learning in Systems Biology, PMLR, 65 [Google Scholar]
- Naul, B., Bloom, J. S., Pérez, F., & van der Walt, S. 2018, Nat. Astron., 2, 151 [NASA ADS] [CrossRef] [Google Scholar]
- Ngeow, C.-C. 2015, Publ. Korean Astron. Soc., 30, 371 [Google Scholar]
- Pan, J.-S., Ting, Y.-S., & Yu, J. 2024, MNRAS, 528, 5890 [Google Scholar]
- Park, J. W., Villar, A., Li, Y., et al. 2021, in Uncertainty and Robustness in Deep Learning Workshop, 38th International Conference on Machine Learning (ICML), PMLR, 139 [Google Scholar]
- Parker, L., Lanusse, F., Golkar, S., et al. 2024, MNRAS, 531, 4990 [Google Scholar]
- Pei, J., Wang, C., & Szarvas, G. 2022, Proc. AAAI Conf. Artif. Intell., 36, 11147 [Google Scholar]
- Pett, M. A. 2015, Nonparametric Statistics for Health Care Research: Statistics for Small Samples and Unusual Distributions (Sage Publications) [Google Scholar]
- Pimentel, O., Estévez, P. A., & Förster, F. 2022, AJ, 165, 18 [Google Scholar]
- Protopapas, P. 2017, in American Astronomical Society Meeting Abstracts# 230, 230, 104 [Google Scholar]
- Richards, J. W., Starr, D. L., Brink, H., et al. 2011, ApJ, 744, 192 [Google Scholar]
- Shelmanov, A., Tsymbalov, E., Puzyrev, D., et al. 2021, in Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, 1833 [Google Scholar]
- Smith, M. J., & Geach, J. E. 2023, Roy. Soc. Open Sci., 10, 221454 [NASA ADS] [CrossRef] [Google Scholar]
- Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. 2014, J. Mach. Learn. Res., 15, 1929 [Google Scholar]
- Swets, J. A. 1988, Science, 240, 1285 [CrossRef] [PubMed] [Google Scholar]
- Udalski, A. 2003, Acta Astron., 53, 291 [NASA ADS] [Google Scholar]
- Valdenegro-Toro, M. 2019, in Bayesian Deep Learning Workshop, 4th Advances in Neural Information Processing Systems (NeurIPS), 32, Vancouver, Canada [Google Scholar]
- Vaswani, A., Shazeer, N., Parmar, N., et al. 2017, Adv. Neural Inform. Process. Syst., 30 [Google Scholar]
- Vazhentsev, A., Kuzmin, G., Shelmanov, A., et al. 2022, in Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics, 1, 8237 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.