Open Access
Issue
A&A
Volume 694, February 2025
Article Number A187
Number of page(s) 18
Section Cosmology (including clusters of galaxies)
DOI https://doi.org/10.1051/0004-6361/202452039
Published online 11 February 2025
  1. Abdul Karim, M. L., Armengaud, E., Mention, G., et al. 2024, JCAP, 2024, 088 [CrossRef] [Google Scholar]
  2. Ahumada, R., Allende Prieto, C., Almeida, A., et al. 2020, ApJS, 249, 3 [NASA ADS] [CrossRef] [Google Scholar]
  3. Akiba, T., Sano, S., Yanase, T., Ohta, T., & Koyama, M. 2019, arXiv e-prints [arXiv:1907.10902] [Google Scholar]
  4. Alcock, C., & Paczynski, B. 1979, Nature, 281, 358 [NASA ADS] [CrossRef] [Google Scholar]
  5. Anderson, L., Pontzen, A., Font-Ribera, A., et al. 2019, ApJ, 871, 144 [NASA ADS] [CrossRef] [Google Scholar]
  6. Angulo, R. E., & Pontzen, A. 2016, MNRAS, 462, L1 [NASA ADS] [CrossRef] [Google Scholar]
  7. Angulo, R. E., Baugh, C. M., Frenk, C. S., & Lacey, C. G. 2008, MNRAS, 383, 755 [Google Scholar]
  8. Ansel, J., Yang, E., He, H., Gimelshein, N., & Jain, A. 2024, in ASPLOS 24 (ACM) [Google Scholar]
  9. Ardizzone, L., Bungert, T., Draxler, F., et al. 2018-2022, Framework for Easily Invertible Architectures (FrEIA), https://github.com/vislearn/FrEIA [Google Scholar]
  10. Arinyo-i-Prats, A., Miralda-Escudé, J., Viel, M., & Cen, R. 2015, JCAP, 2015, 017 [CrossRef] [Google Scholar]
  11. Bird, S. 2017, Astrophysics Source Code Library [record ascl:1710.012] [Google Scholar]
  12. Bird, S., Rogers, K. K., Peiris, H. V., et al. 2019, JCAP, 2019, 050 [CrossRef] [Google Scholar]
  13. Bird, S., Feng, Y., Pedersen, C., & Font-Ribera, A. 2020, JCAP, 2020, 002 [CrossRef] [Google Scholar]
  14. Bird, S., Fernandez, M., Ho, M.-F., et al. 2023, JCAP, 2023, 037 [CrossRef] [Google Scholar]
  15. Boera, E., Becker, G. D., Bolton, J. S., & Nasir, F. 2019, ApJ, 872, 101 [NASA ADS] [CrossRef] [Google Scholar]
  16. Bolton, J. S., Viel, M., Kim, T. S., Haehnelt, M. G., & Carswell, R. F. 2008, MNRAS, 386, 1131 [NASA ADS] [CrossRef] [Google Scholar]
  17. Bolton, J. S., Puchwein, E., Sijacki, D., et al. 2017, MNRAS, 464, 897 [NASA ADS] [CrossRef] [Google Scholar]
  18. Busca, N. G., Delubac, T., Rich, J., et al. 2013, A&A, 552, A96 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  19. Cabayol-Garcia, L., Chaves-Montero, J., Font-Ribera, A., & Pedersen, C. 2023, MNRAS, 525, 3499 [CrossRef] [Google Scholar]
  20. Cen, R., Miralda-Escudé, J., Ostriker, J. P., & Rauch, M. 1994, ApJ, 437, L9 [Google Scholar]
  21. Chabanier, S., Bournaud, F., Dubois, Y., et al. 2020, MNRAS, 495, 1825 [CrossRef] [Google Scholar]
  22. Chabanier, S., Emberson, J. D., Lukić, Z., et al. 2023, MNRAS, 518, 3754 [Google Scholar]
  23. Chen, S.-F., Vlah, Z., & White, M. 2021, JCAP, 2021, 053 [CrossRef] [Google Scholar]
  24. Croft, R. A. C., Weinberg, D. H., Katz, N., & Hernquist, L. 1998, ApJ, 495, 44 [NASA ADS] [CrossRef] [Google Scholar]
  25. Cuceu, A., Font-Ribera, A., Nadathur, S., Joachimi, B., & Martini, P. 2023, Phys. Rev. Lett., 130, 191003 [NASA ADS] [CrossRef] [Google Scholar]
  26. Dawson, K. S., Schlegel, D. J., Ahn, C. P., et al. 2013, AJ, 145, 10 [Google Scholar]
  27. Dawson, K. S., Kneib, J.-P., Percival, W. J., et al. 2016, AJ, 151, 44 [Google Scholar]
  28. de Belsunce, R., Philcox, O. H. E., Iršič, V., et al. 2024, MNRAS, 533, 3756 [NASA ADS] [CrossRef] [Google Scholar]
  29. DESI Collaboration (Aghamousa, A., et al.) 2016, arXiv e-prints [arXiv:1611.00036] [Google Scholar]
  30. DESI Collaboration (Adame, A. G., et al.) 2024, JCAP, accepted [arXiv:2404.03001] [Google Scholar]
  31. Dinh, L., Sohl-Dickstein, J., & Bengio, S. 2016, arXiv e-prints [arXiv:1605.08803] [Google Scholar]
  32. du Mas des Bourboux, H., Rich, J., Font-Ribera, A., et al. 2020, ApJ, 901, 153 [CrossRef] [Google Scholar]
  33. Feng, Y., Bird, S., Anderson, L., Font-Ribera, A., & Pedersen, C. 2018, https://doi.org/10.5281/zenodo.1451799 [Google Scholar]
  34. Fernandez, M. A., Ho, M.-F., & Bird, S. 2022, MNRAS, 517, 3200 [NASA ADS] [CrossRef] [Google Scholar]
  35. Font-Ribera, A., McDonald, P., & Slosar, A. 2018, JCAP, 2018, 003 [CrossRef] [Google Scholar]
  36. Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman, J. 2013, PASP, 125, 306 [Google Scholar]
  37. Gaikwad, P., Rauch, M., Haehnelt, M. G., et al. 2020, MNRAS, 494, 5091 [Google Scholar]
  38. Gaikwad, P., Srianand, R., Haehnelt, M. G., & Choudhury, T. R. 2021, MNRAS, 506, 4389 [NASA ADS] [CrossRef] [Google Scholar]
  39. Gerardi, F., Cuceu, A., Font-Ribera, A., Joachimi, B., & Lemos, P. 2023, MNRAS, 518, 2567 [Google Scholar]
  40. Givans, J. J., & Hirata, C. M. 2020, Phys. Rev. D, 102, 023515 [NASA ADS] [CrossRef] [Google Scholar]
  41. Givans, J. J., Font-Ribera, A., Slosar, A., et al. 2022, JCAP, 2022, 070 [CrossRef] [Google Scholar]
  42. Gnedin, N. Y., & Hui, L. 1998, MNRAS, 296, 44 [NASA ADS] [CrossRef] [Google Scholar]
  43. Haardt, F., & Madau, P. 2012, ApJ, 746, 125 [Google Scholar]
  44. Hamilton, A. J. S. 2000, MNRAS, 312, 257 [NASA ADS] [CrossRef] [Google Scholar]
  45. Hastie, T., Tibshirani, R., & Friedman, J. 2001, in The Elements of Statistical Learning, (New York, NY, USA: Springer New York Inc.), Springer Series in Statistics [CrossRef] [Google Scholar]
  46. Horowitz, B., de Belsunce, R., & Lukić, Z. 2025, MNRAS, 536, 845 [Google Scholar]
  47. Huang, C. W., Krueger, D., Lacoste, A., & Courville, A. 2018, arXiv e-prints [arXiv:1804.00779] [Google Scholar]
  48. Hui, L., Stebbins, A., & Burles, S. 1999, ApJ, 511, L5 [NASA ADS] [CrossRef] [Google Scholar]
  49. Iršič, V., & McQuinn, M. 2018, JCAP, 2018, 026 [CrossRef] [Google Scholar]
  50. Iršič, V., Viel, M., Haehnelt, M. G., Bolton, J. S., & Becker, G. D. 2017, Phys. Rev. Lett., 119, 031302 [CrossRef] [Google Scholar]
  51. Iršič, V., Viel, M., Haehnelt, M. G., et al. 2024, Phys. Rev. D, 109, 043511 [Google Scholar]
  52. Ivanov, M. M. 2024, Phys. Rev. D, 109, 023507 [NASA ADS] [CrossRef] [Google Scholar]
  53. Jacobus, C., Harrington, P., & Lukić, Z. 2023, ApJ, 958, 21 [NASA ADS] [CrossRef] [Google Scholar]
  54. Jimenez Rezende, D., & Mohamed, S. 2015, arXiv e-prints [arXiv:1505.05770] [Google Scholar]
  55. Kaiser, N. 1987, MNRAS, 227, 1 [Google Scholar]
  56. Karaçaylı, N. G., Martini, P., Guy, J., et al. 2024, MNRAS, 528, 3941 [CrossRef] [Google Scholar]
  57. Karamanis, M., & Beutler, F. 2021, arXiv e-prints [arXiv:2106.06331] [Google Scholar]
  58. Khan, N. K., Kulkarni, G., Bolton, J. S., et al. 2024, MNRAS, 530, 4920 [NASA ADS] [CrossRef] [Google Scholar]
  59. Kingma, D. P., & Ba, J. 2014, arXiv e-prints [arXiv:1412.6980] [Google Scholar]
  60. Kokron, N., Chen, S.-F., White, M., DeRose, J., & Maus, M. 2022, JCAP, 2022, 059 [CrossRef] [Google Scholar]
  61. Lee, K.-G., Hennawi, J. F., Spergel, D. N., et al. 2015, ApJ, 799, 196 [NASA ADS] [CrossRef] [Google Scholar]
  62. Lesgourgues, J. 2011, arXiv e-prints [arXiv:1104.2932] [Google Scholar]
  63. Lewis, A., Challinor, A., & Lasenby, A. 2000, ApJ, 538, 473 [Google Scholar]
  64. Lukić, Z., Stark, C. W., Nugent, P., et al. 2015, MNRAS, 446, 3697 [CrossRef] [Google Scholar]
  65. MacKay, D. J. C., et al. 1998, in Neural Networks and Machine Learning, ed. C. M. Bishop, NATO ASI Series (Berlin: Springer), 168, 133 [Google Scholar]
  66. Maion, F., Angulo, R. E., & Zennaro, M. 2022, JCAP, 2022, 036 [Google Scholar]
  67. McCulloch, W. S., & Pitts, W. 1943, Bull. Math. Biophys., 5, 115 [CrossRef] [Google Scholar]
  68. McDonald, P. 2003, ApJ, 585, 34 [NASA ADS] [CrossRef] [Google Scholar]
  69. McDonald, P., & Miralda-Escudé, J. 1999, ApJ, 518, 24 [NASA ADS] [CrossRef] [Google Scholar]
  70. McDonald, P., Miralda-Escudé, J., Rauch, M., et al. 2000, ApJ, 543, 1 [NASA ADS] [CrossRef] [Google Scholar]
  71. McDonald, P., Seljak, U., Cen, R., et al. 2005, ApJ, 635, 761 [NASA ADS] [CrossRef] [Google Scholar]
  72. McDonald, P., Seljak, U., Burles, S., et al. 2006, ApJS, 163, 80 [NASA ADS] [CrossRef] [Google Scholar]
  73. McKay, M. D., Beckman, R. J., & Conover, W. J. 1979, Technometrics, 21, 239 [Google Scholar]
  74. McQuinn, M. 2016, ARA&A, 54, 313 [NASA ADS] [CrossRef] [Google Scholar]
  75. Meiksin, A. A. 2009, Rev. Mod. Phys., 81, 1405 [Google Scholar]
  76. Meiksin, A., Bryan, G., & Machacek, M. 2001, MNRAS, 327, 296 [NASA ADS] [CrossRef] [Google Scholar]
  77. Miralda-Escudé, J., Cen, R., Ostriker, J. P., & Rauch, M. 1996, ApJ, 471, 582 [CrossRef] [Google Scholar]
  78. Molaro, M., Iršič, V., Bolton, J. S., et al. 2023, MNRAS, 521, 1489 [NASA ADS] [CrossRef] [Google Scholar]
  79. Oñorbe, J., Hennawi, J. F., & Lukić, Z. 2017, ApJ, 837, 106 [CrossRef] [Google Scholar]
  80. Palanque-Delabrouille, N., Yèche, C., Lesgourgues, J., et al. 2015, JCAP, 2015, 045 [CrossRef] [Google Scholar]
  81. Palanque-Delabrouille, N., Yèche, C., Schöneberg, N., et al. 2020, JCAP, 2020, 038 [Google Scholar]
  82. Papamakarios, G., Nalisnick, E., Jimenez Rezende, D., Mohamed, S., & Lakshminarayanan, B. 2019, arXiv e-prints [arXiv:1912.02762] [Google Scholar]
  83. Pedersen, C., Font-Ribera, A., Rogers, K. K., et al. 2021, JCAP, 2021, 033 [CrossRef] [Google Scholar]
  84. Pedersen, C., Font-Ribera, A., & Gnedin, N. Y. 2023, ApJ, 944, 223 [NASA ADS] [CrossRef] [Google Scholar]
  85. Planck Collaboration VI. 2020, A&A, 641, A6 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  86. Pontzen, A., Slosar, A., Roth, N., & Peiris, H. V. 2016, Phys. Rev. D, 93, 103519 [NASA ADS] [CrossRef] [Google Scholar]
  87. Puchwein, E., Haardt, F., Haehnelt, M. G., & Madau, P. 2019, MNRAS, 485, 47 [NASA ADS] [CrossRef] [Google Scholar]
  88. Puchwein, E., Bolton, J. S., Keating, L. C., et al. 2023, MNRAS, 519, 6162 [NASA ADS] [CrossRef] [Google Scholar]
  89. Ramachandra, N., Chaves-Montero, J., Alarcon, A., et al. 2022, MNRAS, 515, 1927 [NASA ADS] [CrossRef] [Google Scholar]
  90. Ravoux, C., Abdul Karim, M. L., Armengaud, E., et al. 2023, MNRAS, 526, 5118 [NASA ADS] [CrossRef] [Google Scholar]
  91. Rogers, K. K., & Peiris, H. V. 2021a, Phys. Rev. Lett., 126, 071302 [NASA ADS] [CrossRef] [Google Scholar]
  92. Rogers, K. K., & Peiris, H. V. 2021b, Phys. Rev. D, 103, 043526 [NASA ADS] [CrossRef] [Google Scholar]
  93. Rogers, K. K., Peiris, H. V., Pontzen, A., et al. 2019, JCAP, 2019, 031 [CrossRef] [Google Scholar]
  94. Sacks, J., Welch, W. J., Mitchell, T. J., & Wynn, H. P. 1989, Stat. Sci., 4, 409 [Google Scholar]
  95. Seljak, U., Makarov, A., McDonald, P., et al. 2005, Phys. Rev. D, 71, 103515 [CrossRef] [Google Scholar]
  96. Seljak, U., Makarov, A., McDonald, P., & Trac, H. 2006a, Phys. Rev. Lett., 97, 191303 [NASA ADS] [CrossRef] [Google Scholar]
  97. Seljak, U., Slosar, A., & McDonald, P. 2006b, JCAP, 2006, 014 [CrossRef] [Google Scholar]
  98. Slosar, A., Font-Ribera, A., Pieri, M. M., et al. 2011, JCAP, 2011, 001 [NASA ADS] [CrossRef] [Google Scholar]
  99. Slosar, A., Iršič, V., Kirkby, D., et al. 2013, JCAP, 2013, 026 [CrossRef] [Google Scholar]
  100. Spergel, D. N., Verde, L., Peiris, H. V., et al. 2003, ApJS, 148, 175 [Google Scholar]
  101. Springel, V. 2005, MNRAS, 364, 1105 [Google Scholar]
  102. Takhtaganov, T., Lukić, Z., Müller, J., & Morozov, D. 2021, ApJ, 906, 74 [NASA ADS] [CrossRef] [Google Scholar]
  103. Verde, L., Peiris, H. V., Spergel, D. N., et al. 2003, ApJS, 148, 195 [NASA ADS] [CrossRef] [Google Scholar]
  104. Viel, M., & Haehnelt, M. G. 2006, MNRAS, 365, 231 [NASA ADS] [CrossRef] [Google Scholar]
  105. Viel, M., Weller, J., & Haehnelt, M. G. 2004, MNRAS, 355, L23 [NASA ADS] [CrossRef] [Google Scholar]
  106. Viel, M., Becker, G. D., Bolton, J. S., & Haehnelt, M. G. 2013, Phys. Rev. D, 88, 043502 [NASA ADS] [CrossRef] [Google Scholar]
  107. Villaescusa-Navarro, F., Naess, S., Genel, S., et al. 2018, ApJ, 867, 137 [NASA ADS] [CrossRef] [Google Scholar]
  108. Virtanen, P., Gommers, R., Oliphant, T. E., et al. 2020, NatMe, 17, 261 [NASA ADS] [Google Scholar]
  109. Walther, M., Oñorbe, J., Hennawi, J. F., & Lukić, Z. 2019, ApJ, 872, 13 [NASA ADS] [CrossRef] [Google Scholar]
  110. Walther, M., Armengaud, E., Ravoux, C., et al. 2021, JCAP, 2021, 059 [Google Scholar]
  111. Winkler, C., Worrall, D., Hoogeboom, E., & Welling, M. 2019, arXiv e-prints [arXiv:1912.00042] [Google Scholar]
  112. Zaldarriaga, M., Hui, L., & Tegmark, M. 2001, ApJ, 557, 519 [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.