Open Access
Issue
A&A
Volume 694, February 2025
Article Number A183
Number of page(s) 15
Section Numerical methods and codes
DOI https://doi.org/10.1051/0004-6361/202347461
Published online 12 February 2025
  1. Allam, T., & McEwen, J. D. 2024, RAS Techniques and Instruments, 3, 209 [NASA ADS] [CrossRef] [Google Scholar]
  2. Almeida, A., Anderson, S. F., Argudo-Fernández, M., et al. 2023, ApJS, 267, 44 [NASA ADS] [CrossRef] [Google Scholar]
  3. Andrae, R., Fouesneau, M., Creevey, O., et al. 2018, A&A, 616, A8 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  4. Ba, J. L., Kiros, J. R., & Hinton, G. E. 2016, arXiv e-prints [arXiv:1607.06450] [Google Scholar]
  5. Becker, I., Pichara, K., Catelan, M., et al. 2020, MNRAS, 493, 2981 [NASA ADS] [CrossRef] [Google Scholar]
  6. Bellm, E., Blum, R., Graham, M., et al. 2019a, Large Synoptic Survey Telescope (LSST) Data Management (USA: NASA) [Google Scholar]
  7. Bellm, E. C., Kulkarni, S. R., Graham, M. J., et al. 2019b, PASP, 131, 018002 [Google Scholar]
  8. Bianco, F. B., Ivezic, Ž., Jones, R. L., et al. 2022, ApJS, 258, 1 [NASA ADS] [CrossRef] [Google Scholar]
  9. Braga, V. F., Fiorentino, G., Bono, G., et al. 2022, MNRAS, 517, 5368 [NASA ADS] [CrossRef] [Google Scholar]
  10. Breiman, L. 2001, Mach. Learn., 45, 5 [Google Scholar]
  11. Brown, T., Mann, B., Ryder, N., et al. 2020, in Advances in Neural Information Processing Systems, eds. H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, & H. Lin, (New York: Curran Associates, Inc.), 33, 1877 [Google Scholar]
  12. Brunel, A., Pasquet, J., Pasquet, J., et al. 2019, Electronic Imaging, 31, 90 [Google Scholar]
  13. Catelan, M. 2023, Mem. Soc. Astron. It., 94, 56 [NASA ADS] [Google Scholar]
  14. Catelan, M., & Smith, H. A. 2015, Pulsating Stars (Hoboken: Wiley-VCH) [Google Scholar]
  15. Chambers, K. C., Magnier, E. A., Metcalfe, N., et al. 2016, arXiv e-prints [arXiv:1612.05560] [Google Scholar]
  16. Charnock, T., & Moss, A. 2017, ApJ, 837, L28 [NASA ADS] [CrossRef] [Google Scholar]
  17. Chen, C., Liaw, A., Breiman, L., et al. 2004, Using random forest to learn imbalanced data, University of California, Berkeley, 110, 24 [Google Scholar]
  18. Cho, K., Van Merriënboer, B., Gulcehre, C., et al. 2014, arXiv e-prints [arXiv:1406.1078] [Google Scholar]
  19. Crawshaw, M. 2020, arXiv e-prints [arXiv:2009.09796] [Google Scholar]
  20. Dékány, I., & Grebel, E. K. 2022, ApJS, 261, 33 [CrossRef] [Google Scholar]
  21. Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. 2018, arXiv e-prints [arXiv:1810.04805] [Google Scholar]
  22. Donoso-Oliva, C., Cabrera-Vives, G., Protopapas, P., Carrasco-Davis, R., & Estevez, P. A. 2021, MNRAS, 505, 6069 [CrossRef] [Google Scholar]
  23. Donoso-Oliva, C., Becker, I., Protopapas, P., et al. 2023, A&A, 670, A54 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  24. Fernie, J. D. 1992, AJ, 103, 1647 [Google Scholar]
  25. Fernie, J. D. 1995, AJ, 110, 2361 [Google Scholar]
  26. Flewelling, H. A., Magnier, E. A., Chambers, K. C., et al. 2020, ApJS, 251, 7 [NASA ADS] [CrossRef] [Google Scholar]
  27. Förster, F., Cabrera-Vives, G., Castillo-Navarrete, E., et al. 2021, AJ, 161, 242 [CrossRef] [Google Scholar]
  28. Gaia Collaboration (Vallenari, A., et al.) 2023, A&A, 674, A1 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  29. He, K., Zhang, X., Ren, S., & Sun, J. 2016, in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770 [Google Scholar]
  30. Hochreiter, S., & Schmidhuber, J. 1997, Neural Comput., 9, 1735 [CrossRef] [Google Scholar]
  31. Holl, B., Audard, M., Nienartowicz, K., et al. 2018, A&A, 618, A30 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  32. Ioffe, S., & Szegedy, C. 2015, in Proceedings of the 32nd International Conference on International Conference on Machine Learning, ICML’15 (JMLR.org), 37, 448 [Google Scholar]
  33. Ivezic, Ž., Smith, J. A., Miknaitis, G., et al. 2007, AJ, 134, 973 [Google Scholar]
  34. Ivezic, Ž., Kahn, S. M., Tyson, J. A., et al. 2019, ApJ, 873, 111 [NASA ADS] [CrossRef] [Google Scholar]
  35. Jordi, C., Gebran, M., Carrasco, J. M., et al. 2010, A&A, 523, A48 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  36. Leavitt, H. S., & Pickering, E. C. 1912, Harvard College Observ. Circ., 173, 1 [NASA ADS] [Google Scholar]
  37. Lemaître, G., Nogueira, F., & Aridas, C. K. 2017, J. Mach. Learn. Res., 18, 1 [Google Scholar]
  38. Liu, P., Qiu, X., & Huang, X. 2016, in Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing (Austin, Texas: Association for Computational Linguistics), 118 [CrossRef] [Google Scholar]
  39. Loshchilov, I., & Hutter, F. 2019, in International Conference on Learning Representations [Google Scholar]
  40. Magnier, E. A., Schlafly, E., Finkbeiner, D., et al. 2013, ApJS, 205, 20 [Google Scholar]
  41. Magnier, E. A., Schlafly, E. F., Finkbeiner, D. P., et al. 2020, ApJS, 251, 6 [NASA ADS] [CrossRef] [Google Scholar]
  42. Marrese, P., Marinoni, S., Fabrizio, M., & Altavilla, G. 2019, A&A, 621, A144 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  43. Matheson, T., Stubens, C., Wolf, N., et al. 2021, AJ, 161, 107 [NASA ADS] [CrossRef] [Google Scholar]
  44. Möller, A., & de Boissière, T. 2020, MNRAS, 491, 4277 [CrossRef] [Google Scholar]
  45. Möller, A., Peloton, J., Ishida, E. E. O., et al. 2021, MNRAS, 501, 3272 [CrossRef] [Google Scholar]
  46. Mondrik, N., Long, J. P., & Marshall, J. L. 2015, ApJ, 811, L34 [NASA ADS] [CrossRef] [Google Scholar]
  47. Morgan, S. M., Wahl, J. N., & Wieckhorst, R. M. 2007, MNRAS, 374, 1421 [NASA ADS] [CrossRef] [Google Scholar]
  48. Muthukrishna, D., Mandel, K. S., Lochner, M., Webb, S., & Narayan, G. 2022, MNRAS, 517, 393 [NASA ADS] [CrossRef] [Google Scholar]
  49. Neil, D., Pfeiffer, M., & Liu, S.-C. 2016, in Proceedings of the 30th International Conference on Neural Information Processing Systems, NIPS’16 (Red Hook, NY, USA: Curran Associates Inc.), 3889 [Google Scholar]
  50. Ngeow, C.-C., Liao, S.-H., Bellm, E. C., et al. 2021, AJ, 162, 63 [Google Scholar]
  51. Nordin, J., Brinnel, V., van Santen, J., et al. 2019, A&A, 631, A147 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  52. Nun, I., Protopapas, P., Sim, B., et al. 2015, arXiv e-prints [arXiv:1506.00010] [Google Scholar]
  53. Onken, C. A., Wolf, C., Bessell, M. S., et al. 2019, PASA, 36, e033 [Google Scholar]
  54. Pascanu, R., Mikolov, T., & Bengio, Y. 2013, in Proceedings of the 30th International Conference on International Conference on Machine Learning, ICML’13 (JMLR.org), 28, III–1310–III–1318 [Google Scholar]
  55. Pasquet, J., Pasquet, J., Chaumont, M., & Fouchez, D. 2019, A&A, 627, A21 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  56. Pedregosa, F., Varoquaux, G., Gramfort, A., et al. 2011, J. Mach. Learn. Res., 12, 2825 [Google Scholar]
  57. Peters, M. E., Neumann, M., Iyyer, M., et al. 2018, in Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers) (New Orleans, Louisiana: Association for Computational Linguistics), 2227 [CrossRef] [Google Scholar]
  58. Pimentel, Ó., Estévez, P. A., & Förster, F. 2023, AJ, 165, 18 [NASA ADS] [CrossRef] [Google Scholar]
  59. Ricker, G. R., Winn, J. N., Vanderspek, R., et al. 2015, J. Astron. Teles. Instrum. Syst., 1, 014003 [Google Scholar]
  60. Sánchez-Sáez, P., Reyes, I., Valenzuela, C., et al. 2021, AJ, 161, 141 [CrossRef] [Google Scholar]
  61. Shappee, B. J., Prieto, J. L., Grupe, D., et al. 2014, ApJ, 788, 48 [Google Scholar]
  62. Smith, M. J., & Geach, J. E. 2023, R. Soc. Open Sci., 10, 221454 [NASA ADS] [CrossRef] [Google Scholar]
  63. Smith, K. W., Williams, R. D., Young, D. R., et al. 2019, RNAAS, 3, 26 [NASA ADS] [Google Scholar]
  64. Stassun, K. G., Oelkers, R. J., Paegert, M., et al. 2019, AJ, 158, 138 [Google Scholar]
  65. Steeghs, D., Galloway, D. K., Ackley, K., et al. 2022, MNRAS, 511, 2405 [NASA ADS] [CrossRef] [Google Scholar]
  66. Szegedy, C., Liu, W., Jia, Y., et al. 2015, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) [Google Scholar]
  67. Tonry, J. L., Stubbs, C. W., Lykke, K. R., et al. 2012, ApJ, 750, 99 [Google Scholar]
  68. Tonry, J. L., Denneau, L., Heinze, A. N., et al. 2018, PASP, 130, 064505 [Google Scholar]
  69. Touvron, H., Martin, L., Stone, K., et al. 2023, arXiv e-prints [arXiv:2307.09288] [Google Scholar]
  70. Vaswani, A., Shazeer, N., Parmar, N., et al. 2017, in Advances in Neural Information Processing Systems, eds. I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, & R. Garnett (New York: Curran Associates, Inc.), 30 [Google Scholar]
  71. Wu, Y., Schuster, M., Chen, Z., et al. 2016, arXiv e-prints [arXiv:1609.08144] [Google Scholar]
  72. Zhang, S., Wu, Y., Che, T., et al. 2016, in Advances in Neural Information Processing Systems, eds. D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, & R. Garnett (Curran Associates, Inc.), 29 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.