Open Access
Issue |
A&A
Volume 693, January 2025
|
|
---|---|---|
Article Number | A256 | |
Number of page(s) | 27 | |
Section | Numerical methods and codes | |
DOI | https://doi.org/10.1051/0004-6361/202451073 | |
Published online | 23 January 2025 |
- Abazajian, K. N., et al. 2009, ApJS, 182, 543 [NASA ADS] [CrossRef] [Google Scholar]
- Baron, D. 2019, arXiv e-prints [arXiv:1904.07248] [Google Scholar]
- Bengio, Y., Courville, A., & Vincent, P. 2013, IEEE Trans. Pattern Anal. Mach. Intell., 35, 1798 [CrossRef] [Google Scholar]
- Boffin, H. M. J., Vinther, J., Lundin, L. K., & Bazin, G. 2020, SPIE, 11449, 114491B [NASA ADS] [Google Scholar]
- Cavanagh, M. K., Bekki, K., & Groves, B. A. 2021, MNRAS, 506, 659 [NASA ADS] [CrossRef] [Google Scholar]
- Chen, X., Duan, Y., Houthooft, R., et al. 2016, in NIPS’ 16 (Red Hook, NY, USA: Curran Associates Inc.), 2180 [Google Scholar]
- Cranmer, K., Brehmer, J., & Louppe, G. 2020, PNAS, 117, 30055 [NASA ADS] [CrossRef] [Google Scholar]
- Dieng, A. B., Kim, Y., Rush, A. M., & Blei, D. M. 2019, in AISTATS, PMLR, 2397 [Google Scholar]
- Dittadi, A., Träuble, F., Locatello, F., et al. 2021, in ICLR, [openreview: 8VXvj1QNRl1] [Google Scholar]
- Fabbro, S., Venn, K., O’Briain, T., et al. 2018, MNRAS, 475, 2978 [CrossRef] [Google Scholar]
- Falcon, W., & The PyTorch Lightning team 2019, PyTorch Lightning [Google Scholar]
- Goodfellow, I., Pouget-Abadie, J., Mirza, M., et al. 2014, in NIPS’ 14, 27, eds. Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, & K. Weinberger, (Curran Associates, Inc.), 2672 [Google Scholar]
- Goodfellow, I., Bengio, Y., & Courville, A. 2016, Deep Learning (MIT Press) [Google Scholar]
- Gordon, D. F., & Desjardins, M. 1995, Mach. Learn., 20, 5 [Google Scholar]
- Gray, D. F., & Kaur, T. 2019, ApJ, 882, 148 [NASA ADS] [CrossRef] [Google Scholar]
- Gretton, A., Borgwardt, K. M., Rasch, M. J., Schölkopf, B., & Smola, A. 2012, J. Mach. Learn. Res., 13, 723 [Google Scholar]
- Gullikson, K., Dodson-Robinson, S., & Kraus, A. 2014, AJ, 148, 53 [NASA ADS] [CrossRef] [Google Scholar]
- He, K., Zhang, X., Ren, S., & Sun, J. 2016, in CVPR, 770 [Google Scholar]
- Higgins, I., Matthey, L., Pal, A., et al. 2017, in ICLR [openreview:Sy2fzU9gl] [Google Scholar]
- Holm, S. 1979, Scand. J. Stat., 6, 65 [Google Scholar]
- Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. 2017, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 4700 [Google Scholar]
- Kingma, D. P., & Welling, M. 2014, in ICLR, Banff, Canada [arXiv:1312.6114] [Google Scholar]
- Kingma, D. P., & Ba, J. 2015, in ICLR [arXiv:1412.6980] [Google Scholar]
- Kingma, D. P., Rezende, D. J., Mohamed, S., & Welling, M. 2014, in NIPS’ 14 (Cambridge, MA,: MIT Press), 3581 [Google Scholar]
- Kurucz, R. L. 2005, Mem. Soc. Astron. Ital. Suppl., 8, 14 [Google Scholar]
- Le, L., Patterson, A., & White, M. 2018, in NIPS’ 18 (Red Hook, NY, USA: Curran Associates Inc.), 107 [Google Scholar]
- Leeb, F., Bauer, S., Besserve, M., & Schölkopf, B. 2022, in NIPS’ 22 (Red Hook, NY, USA: Curran Associates Inc.) [Google Scholar]
- Leung, H. W., & Bovy, J. 2019, MNRAS, 483, 3255 [NASA ADS] [Google Scholar]
- Locatello, F., Bauer, S., Lucic, M., et al. 2020, JMLR, 21, 1 [Google Scholar]
- Mahabal, A., Sheth, K., Gieseke, F., et al. 2017, CoRR, [arXiv:1709.06257] [Google Scholar]
- Mann, H. B., & Whitney, D. R. 1947, Ann. Math. Stat., 18, 50 [Google Scholar]
- Mayor, M., Pepe, F., Queloz, D., et al. 2003, The Messenger, 114, 20 [NASA ADS] [Google Scholar]
- Miller, N. J., Maxted, P. F. L., & Smalley, B. 2020, MNRAS, 497, 2899 [Google Scholar]
- Montero, M., Bowers, J., Ponte Costa, R., Ludwig, C., & Malhotra, G. 2022, in NIPS’ 22, 35, eds. S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, & A. Oh (Curran Associates, Inc.), 10136 [Google Scholar]
- Mucciarelli, A. 2019, Autokur, Unpublished/in proceeding [Google Scholar]
- Murphy, K. P. 2022, Probabilistic Machine Learning: An Introduction (MIT Press) [Google Scholar]
- Murphy, K. P. 2023, Probabilistic Machine Learning: Advanced Topics (MIT Press) [Google Scholar]
- Muyskens, A. L., Goumiri, I. R., Priest, B. W., et al. 2022, AJ, 163, 148 [NASA ADS] [CrossRef] [Google Scholar]
- Nakkiran, P., Kaplun, G., Bansal, Y., et al. 2021, J. Stat. Mech.: Theory Exp., 2021, 124003 [Google Scholar]
- Ness, M., Hogg, D. W., Rix, H.-W., Ho, A. Y. Q., & Zasowski, G. 2015, ApJ, 808, 16 [NASA ADS] [CrossRef] [Google Scholar]
- O’Briain, T., Ting, Y.-S., Fabbro, S., et al. 2021, ApJ, 906, 130 [CrossRef] [Google Scholar]
- Perez, E., Strub, F., de Vries, H., Dumoulin, V., & Courville, A. 2018, in AAAI’ 18/IAAI’ 18/EAAI’ 18 (AAAI Press) [Google Scholar]
- Peters, J., Janzing, D., & Schlökopf, B. 2017, Elements of Causal Inference: Foundations and Learning Algorithms (The MIT Press) [Google Scholar]
- Portillo, S. K. N., Parejko, J. K., Vergara, J. R., & Connolly, A. J. 2020, AJ, 160, 45 [Google Scholar]
- Recio-Blanco, A., Kordopatis, G., de Laverny, P., et al. 2023, A&A, 674, A38 [CrossRef] [EDP Sciences] [Google Scholar]
- Rezende, D., & Mohamed, S. 2015, in ICML, PMLR, 1530 [Google Scholar]
- Rombach, R., Blattmann, A., Lorenz, D., Esser, P., & Ommer, B. 2022, in CVPR, 10684 [Google Scholar]
- Scott, D. W. 1992, Multivariate Density Estimation: Theory, Practice, and Visualization (John Wiley & Sons) [Google Scholar]
- Sedaghat, N., Romaniello, M., Carrick, J. E., & Pineau, F.-X. 2021, MNRAS, 501, 6026 [NASA ADS] [CrossRef] [Google Scholar]
- Slijepcevic, I. V., Scaife, A. M. M., Walmsley, M., et al. 2022, MNRAS, 514, 2599 [NASA ADS] [CrossRef] [Google Scholar]
- Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., & Ganguli, S. 2015, in ICLR, PMLR, 2256 [Google Scholar]
- Stassun, K. G., et al. 2019, AJ, 158, 138 [NASA ADS] [CrossRef] [Google Scholar]
- Ting, Y.-S., Conroy, C., Rix, H.-W., & Cargile, P. 2019, ApJ, 879, 69 [Google Scholar]
- Zhao, S., Song, J., & Ermon, S. 2019, in AAAI’ 19/IAAI’ 19/EAAI’ 19 (AAAI Press) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.