Open Access
Issue |
A&A
Volume 692, December 2024
|
|
---|---|---|
Article Number | A208 | |
Number of page(s) | 17 | |
Section | Numerical methods and codes | |
DOI | https://doi.org/10.1051/0004-6361/202450370 | |
Published online | 13 December 2024 |
- Abadi, M., Agarwal, A., Barham, P., et al. 2015, TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems, software available from tensorflow.org [Google Scholar]
- Aivazyan, V., Almualla, M., Antier, S., et al. 2022, MNRAS, 515, 6007 [NASA ADS] [CrossRef] [Google Scholar]
- Aleo, P. D., Malanchev, K., Sharief, S., et al. 2023, ApJS, 266, 9 [NASA ADS] [CrossRef] [Google Scholar]
- Allam, Tarek, J., Peloton, J., & McEwen, J. D. 2023, arXiv e-prints [arXiv:2303.08951] [Google Scholar]
- Alves, C. S., Peiris, H. V., Lochner, M., et al. 2022, ApJS, 258, 23 [NASA ADS] [CrossRef] [Google Scholar]
- Bamford, S. P., Nichol, R. C., Baldry, I. K., et al. 2009, MNRAS, 393, 1324 [NASA ADS] [CrossRef] [Google Scholar]
- Baron, D. 2019, arXiv e-prints [arXiv:1904.07248] [Google Scholar]
- Bellm, E. C., Kulkarni, S. R., Graham, M. J., et al. 2019, PASP, 131, 018002 [Google Scholar]
- Bengio, Y., Simard, P., & Frasconi, P. 1994, IEEE Trans. Neural Netw., 5, 157 [CrossRef] [Google Scholar]
- Biswas, B., Ishida, E. E. O., Peloton, J., et al. 2023a, A&A, 677, A77 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Biswas, B., Lao, J., Aubourg, E., et al. 2023b, arXiv e-prints [arXiv:2311.04845] [Google Scholar]
- Bom, C. R., Fraga, B. M. O., Dias, L. O., et al. 2022, MNRAS, 515, 5121 [Google Scholar]
- Boone, K. 2019, AJ, 158, 257 [NASA ADS] [CrossRef] [Google Scholar]
- Cabrera-Vives, G., Moreno-Cartagena, D., Astorga, N., et al. 2024, A&A, 689, A289 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Carry, B., Peloton, J., Le Montagner, R., Mahlke, M., & Berthier, J. 2024, A&A, 687, A38 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Dark Energy Survey Collaboration, Abbott, T., Abdalla, F. B., et al. 2016, MNRAS, 460, 1270 [NASA ADS] [CrossRef] [Google Scholar]
- DES Collaboration, Abbott, T. M. C., Acevedo, M., et al. 2024, ApJ, 973, L14 [NASA ADS] [CrossRef] [Google Scholar]
- Dozat, T. 2016, in Proceedings of the 4th International Conference on Learning Representations, 1 [Google Scholar]
- Eriksen, M., Alarcon, A., Cabayol, L., et al. 2020, MNRAS, 497, 4565 [CrossRef] [Google Scholar]
- Förster, F., Cabrera-Vives, G., Castillo-Navarrete, E., et al. 2021, AJ, 161, 242 [CrossRef] [Google Scholar]
- Hilbe, J. M., Riggs, J., Wandelt, B. D., et al. 2014, Significance, 11, 48 [CrossRef] [Google Scholar]
- Hložek, R., Malz, A. I., Ponder, K. A., et al. 2023, ApJS, 267, 25 [Google Scholar]
- Ho, T. K. 1995, Proc. 3rd Int. Conf. Doc. Anal. Recog., 1, 278 [Google Scholar]
- Hochreiter, S., & Schmidhuber, J. 1997, Neural Comput., 9, 1735 [CrossRef] [Google Scholar]
- Ishida, E. E. O. 2019, Nat. Astron., 3, 680 [NASA ADS] [CrossRef] [Google Scholar]
- Ivezić, Ž., Kahn, S. M., Tyson, J. A., et al. 2019, ApJ, 873, 111 [Google Scholar]
- Karim, F., Majumdar, S., Darabi, H., & Harford, S. 2019, Neural Netw., 116, 237 [CrossRef] [Google Scholar]
- Karpov, S., & Peloton, J. 2022, arXiv e-prints [arXiv:2202.05719] [Google Scholar]
- Karpov, S., & Peloton, J. 2023, Contrib. Astron. Observ. Skal. Pleso, 53, 69 [NASA ADS] [Google Scholar]
- Kessler, R., Bernstein, J. P., Cinabro, D., et al. 2009, PASP, 121, 1028 [Google Scholar]
- Kessler, R., Bassett, B., Belov, P., et al. 2010, PASP, 122, 1415 [CrossRef] [Google Scholar]
- Khakpash, S., Bianco, F. B., Modjaz, M., et al. 2024, ApJS, submitted [arXiv:2405.01672] [Google Scholar]
- Knop, R., & ELAsTiCC Team. 2023, AAS Meeting Abstracts, 55, 117.02 [Google Scholar]
- Kuhn, M. A., Benjamin, R. A., Ishida, E. E. O., et al. 2023, Res. Notes Am. Astron. Soc., 7, 57 [Google Scholar]
- Le Montagner, R., Peloton, J., Carry, B., et al. 2023, A&A, 680, A17 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Leoni, M., Ishida, E. E. O., Peloton, J., & Möller, A. 2022, A&A, 663, A13 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- LSST Science Collaboration, Abell, P. A., Allison, J., et al. 2009, arXiv e-prints [arXiv:0912.0201] [Google Scholar]
- Malanchev, K. L., Pruzhinskaya, M. V., Korolev, V. S., et al. 2021, MNRAS, 502, 5147 [Google Scholar]
- Malz, A. I., Dai, M., Ponder, K. A., et al. 2024, A&A, in press, https://doi.org/10.1051/0004-6361/202346891 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Matheson, T., Stubens, C., Wolf, N., et al. 2021, AJ, 161, 107 [NASA ADS] [CrossRef] [Google Scholar]
- Möller, A., & de Boissière, T. 2019, MNRAS, 491, 4277 [Google Scholar]
- Moller, A., & Main de Boissiere, T. 2022, in Machine Learning for Astrophysics (Berlin: Springer), 21 [Google Scholar]
- Möller, A., Peloton, J., Ishida, E. E. O., et al. 2021, MNRAS, 501, 3272 [CrossRef] [Google Scholar]
- Möller, A., Smith, M., Sako, M., et al. 2022, MNRAS, 514, 5159 [CrossRef] [Google Scholar]
- Möller, A., Wiseman, P., Smith, M., et al. 2024, MNRAS, 533, 2073 [CrossRef] [Google Scholar]
- Moriya, T. J., Sorokina, E. I., & Chevalier, R. A. 2018, Space Sci. Rev., 214, 59 [Google Scholar]
- Moriya, T. J., Inserra, C., Tanaka, M., et al. 2022, A&A, 666, A157 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Nordin, J., Brinnel, V., van Santen, J., et al. 2019, A&A, 631, A147 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Pan, S. J., & Yang, Q. 2010, IEEE Trans. Knowledge Data Eng., 22, 1345 [CrossRef] [Google Scholar]
- Patterson, M. T., Bellm, E. C., Rusholme, B., et al. 2018, PASP, 131, 018001 [Google Scholar]
- Pedregosa, F., Varoquaux, G., Gramfort, A., et al. 2011, J. Mach. Learn. Res., 12, 2825 [Google Scholar]
- Perlmutter, S., Aldering, G., Goldhaber, G., et al. 1999, ApJ, 517, 565 [Google Scholar]
- Pruzhinskaya, M., Volnova, A., Kornilov, M., et al. 2022, Res. Notes Am. Astron. Soc., 6, 122 [Google Scholar]
- Pruzhinskaya, M. V., Ishida, E. E. O., Novinskaya, A. K., et al. 2023, A&A, 672, A111 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Qu, H., & Sako, M. 2022, AJ, 163, 57 [NASA ADS] [CrossRef] [Google Scholar]
- Riess, A. G., Filippenko, A. V., Challis, P., et al. 1998, AJ, 116, 1009 [Google Scholar]
- Rumelhart, D. E., & McClelland, J. L. 1987, Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Learning Internal Representations by Error Propagation (Cambridge: MIT Press), 318 [Google Scholar]
- Russeil, E., Ishida, E. E. O., Le Montagner, R., Peloton, J., & Moller, A. 2022, arXiv e-prints [arXiv:2211.10987] [Google Scholar]
- Russeil, E., Olivetti de França, F., Malanchev, K., et al. 2024a, arXiv e-prints [arXiv:2402.04298] [Google Scholar]
- Russeil, E., Malanchev, K. L., Aleo, P. D., et al. 2024b, A&A, 683, A251 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Schmidt, R. M. 2019, arXiv e-prints [arXiv:1912.05911] [Google Scholar]
- Smith, K. W., Williams, R. D., Young, D. R., et al. 2019, Res. Notes Am. Astron. Soc., 3, 26 [Google Scholar]
- Vincenzi, M., Sullivan, M., Möller, A., et al. 2023, MNRAS, 518, 1106 [Google Scholar]
- Vincenzi, M., Brout, D., Armstrong, P., et al. 2024, ApJ, 975, 86 [NASA ADS] [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.