Open Access
Issue |
A&A
Volume 691, November 2024
|
|
---|---|---|
Article Number | A224 | |
Number of page(s) | 12 | |
Section | Numerical methods and codes | |
DOI | https://doi.org/10.1051/0004-6361/202451789 | |
Published online | 15 November 2024 |
- Bottke, W. F., Durda, D. D., Nesvorny, D., et al. 2005, Icarus, 175, 111 [NASA ADS] [CrossRef] [Google Scholar]
- Bottke, W. F., Vokrouhlický, D., Rubincam, D. P., & Nesvorny, D. 2006, Annu. Rev. Earth Planet. Sci., 34, 157 [CrossRef] [Google Scholar]
- Branca, L., & Pallottini, A. 2024, A&A, 684, A203 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Cai, S., Wang, Z., Chryssostomidis, C., & Karniadakis, G. E. 2020, in ASME 2020 Fluids Engineering Division Summer Meeting collocated with the ASME 2020 Heat Transfer Summer Conference and the ASME 2020 18th International Conference on Nanochannels, Microchannels, and Minichannels, 3: Computational Fluid Dynamics; Micro and Nano Fluid Dynamics, V003T05A054 [Google Scholar]
- Čapek, D., & Vokrouhlický, D. 2005, Dyn. Popul. Planet. Syst., 197, 171 [Google Scholar]
- Chen, T., & Chen, H. 1995, IEEE Trans. Neural Networks, 6, 911 [CrossRef] [Google Scholar]
- Chesley, S. R., Ostro, S. J., Vokrouhlický, D., et al. 2003, Science, 302, 1739 [NASA ADS] [CrossRef] [Google Scholar]
- Chesley, S. R., Farnocchia, D., Nolan, M. C., et al. 2014, Icarus, 235, 5 [NASA ADS] [CrossRef] [Google Scholar]
- Davidsson, B. J. R., & Rickman, H. 2014, Icarus, 243, 58 [NASA ADS] [CrossRef] [Google Scholar]
- Delbó, M. 2004, The Nature of Near-earth Asteroids from the Study of their Thermal Infrared Emission [Google Scholar]
- Delbó, M., & Harris, A. W. 2002, Meteor. Planet. Sci., 37, 1929 [CrossRef] [Google Scholar]
- Delbó, M., Dell’Oro, A., Harris, A. W., Mottola, S., & Mueller, M. 2007, Icarus, 190, 236 [CrossRef] [Google Scholar]
- Delbó, M., Mueller, M., Emery, J. P., Rozitis, B., & Capria, M. T. 2015, Asteroid Thermophysical Modeling (University of Arizona Press) [Google Scholar]
- Emery, J. P., Fernáandez, Y. R., Kelley, M. S. P., et al. 2014, Icarus, 234, 17 [NASA ADS] [CrossRef] [Google Scholar]
- Farnocchia, D., & Chesley, S. R. 2014, Icarus, 229, 321 [NASA ADS] [CrossRef] [Google Scholar]
- Farnocchia, D., Chesley, S. R., Chodas, P. W., et al. 2013, Icarus, 224, 192 [Google Scholar]
- Farnocchia, D., Chesley, S. R., Takahashi, Y., et al. 2021, Icarus, 369, 114594 [NASA ADS] [CrossRef] [Google Scholar]
- Garg, S., Gupta, H., & Chakraborty, S. 2022, Eng. Struct., 270 [Google Scholar]
- Hanuš, J., Broz, M., Durech, J., et al. 2013, A&A, 559, A134 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Hanuš, J., Delbó’, M., Vokrouhlicky, D., et al. 2016a, A&A, 592, A34 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Hanuš, J., Durech, J., Oszkiewicz, D. A., et al. 2016b, A&A, 586, A108 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Hanuš, J., Vokrouhlicky, D., Delbó, M., et al. 2018, A&A, 620, L8 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Harris, A. W. 1998, Icarus, 131, 291 [Google Scholar]
- He, Z. L., Ni, F. T., Wang, W. G., & Zhang, J. 2021, Mater. Today Commun., 28 [Google Scholar]
- He, J. Y., Koric, S., Kushwaha, S., et al. 2023, Comput. Methods Appl. Mech. Eng., 415 [Google Scholar]
- Hu, J., Shen, L., & Sun, G. 2018, in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition [Google Scholar]
- Lagerros, J. S. V. 1996a, A&A, 310, 1011 [Google Scholar]
- Lagerros, J. S. V. 1996b, A&A, 315, 625 [NASA ADS] [Google Scholar]
- Lagerros, J. S. V. 1997, A&A, 325, 1226 [NASA ADS] [Google Scholar]
- Lagerros, J. S. V. 1998, A&A, 332, 1123 [Google Scholar]
- Laghi, L., Schiassi, E., De, M., Furfaro, F. R., & Domiziano, M. 2023, Nucl. Sci. Eng., 197, 2373 [NASA ADS] [CrossRef] [Google Scholar]
- Lebofsky, L. A., & Spencer, J. R. 1989, in Asteroids II, 128 (University of Arizona Press) [Google Scholar]
- Lebofsky, L. A., Sykes, M. V., Tedesco, E. F., et al. 1986, Icarus, 68, 239 [NASA ADS] [CrossRef] [Google Scholar]
- Lu, L., Jin, P., Pang, G., Zhang, Z., & Karniadakis, G. E. 2021, Nat. Mach. Intell., 3, 218 [CrossRef] [Google Scholar]
- Maas, A. L. 2013, Rectifier Nonlinearities Improve Neural Network Acoustic Models in ICML2013 [Google Scholar]
- Martin, J., & Schaub, H. 2022a, CeMDA, 134, 13 [NASA ADS] [CrossRef] [Google Scholar]
- Martin, J., & Schaub, H. 2022b, CeMDA, 134, 46 [NASA ADS] [CrossRef] [Google Scholar]
- Mathews, N., & Thompson, B. 2023, Bull. AAS, 55 [Google Scholar]
- Müller, T. G., Durech, J., Hasegawa, S., et al. 2011, A&A, 525, A145 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Müller, T. G., O’Rourke, L., Barucci, A. M., et al. 2012, A&A, 548, A36 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Nakano, R., & Hirabayashi, M. 2023, Icarus, 404, 115647 [NASA ADS] [CrossRef] [Google Scholar]
- Raissi, M., Perdikaris, P., & Karniadakis, G. E. 2019, J. Comput. Phys., 378, 686 [NASA ADS] [CrossRef] [Google Scholar]
- Rozitis, B., & Green, S. F. 2011, MNRAS, 415, 2042 [NASA ADS] [CrossRef] [Google Scholar]
- Rozitis, B., & Green, S. F. 2012, MNRAS, 423, 367 [NASA ADS] [CrossRef] [Google Scholar]
- Rozitis, B., Duddy, S. R., Green, S. F., & Lowry, S. C. 2013, A&A, 555, A20 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Spencer, John, R., Lebofsky, Larry, A., & Sykes, Mark, V. 1989, Icarus, 78, 337 [CrossRef] [Google Scholar]
- Spitale, J., & Greenberg, R. 2001, Icarus, 149, 222 [NASA ADS] [CrossRef] [Google Scholar]
- Tomas, M., & Ben, T. 1997, J. Graph. Tools, 2, 21 [CrossRef] [Google Scholar]
- Vaswani, A., Shazeer, N., Parmar, N., et al. 2017, in Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS’17 (Red Hook, NY, USA: Curran Associates Inc.), 6000 [Google Scholar]
- Vokrouhlický, D. 1998a, A&A, 335, 1093 [Google Scholar]
- Vokrouhlický, D. 1998b, A&A, 338, 353 [NASA ADS] [Google Scholar]
- Vokrouhlický, D. 1999, A&A, 344, 362 [NASA ADS] [Google Scholar]
- Vokrouhlický, D., Chesley, S. R., & Matson, R. D. 2008, AJ, 135, 2336 [Google Scholar]
- Vokrouhlický, D., Nesvorny, D., Bottke, W. F., & Morbidelli, A. 2010, AJ, 139, 2148 [CrossRef] [Google Scholar]
- Vokrouhlický, D., Bottke, W. F., Chesley, S. R., Scheeres, D. J., & Statler, T. S. 2015, The Yarkovsky and YORP Effects (University of Arizona Press) [Google Scholar]
- Vokrouhlický, D., Pravec, P., Durech, J., et al. 2017, AJ, 153, 270 [CrossRef] [Google Scholar]
- Wang, Q., Wu, B., Zhu, P., et al. 2020, in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition [Google Scholar]
- Wolters, S. D., & Green, S. F. 2009, MNRAS, 400, 204 [Google Scholar]
- Woo, S. H., Park, J., Lee, J. Y., & Kweon, I. S. 2018, Comput. Vis. -ECCV 2018, 11211 [Google Scholar]
- Xu, Y. B., Zhou, L. Y., Hui, H. J., & Li, J. Y. 2022, A&A, 666, A88 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Yu, L. L., & Ji, J. H. 2015, MNRAS, 452, 368 [NASA ADS] [CrossRef] [Google Scholar]
- Zobeiry, N., & Humfeld, K. D. 2021, Eng. Applic. Artif. Intell., 101 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.