Open Access
Issue
A&A
Volume 683, March 2024
Article Number A105
Number of page(s) 18
Section Numerical methods and codes
DOI https://doi.org/10.1051/0004-6361/202347948
Published online 12 March 2024
  1. Akiyama, K., Alberdi, A., Alef, W., et al. 2019, ApJ, 875, L2 [NASA ADS] [CrossRef] [Google Scholar]
  2. Bean, B., Bhatnagar, S., Castro, S., et al. 2022, PASP, 134, 114501 [NASA ADS] [CrossRef] [Google Scholar]
  3. Béthermin, M., Fudamoto, Y., Ginolfi, M., et al. 2020, A&A, 643, A2 [Google Scholar]
  4. Bishop, C. M. 2007, Pattern Recognition and Machine Learning (Information Science and Statistics), 1st edn. (Springer) [Google Scholar]
  5. Bouwens, R. J., Smit, R., Schouws, S., et al. 2022, ApJ, 931, 160 [NASA ADS] [CrossRef] [Google Scholar]
  6. Bradley, L., Sipocz, B., Robitaille, T., et al. 2016, Astrophysics Source Code Library [record ascl:1609.011] [Google Scholar]
  7. Clark, B. G. 1980, A&A, 89, 377 [NASA ADS] [Google Scholar]
  8. Connor, L., Bouman, K. L., Ravi, V., & Hallinan, G. 2022, MNRAS, 514, 2614 [NASA ADS] [CrossRef] [Google Scholar]
  9. Conway, J. E., Cornwell, T. J., & Wilkinson, P. N. 1990, MNRAS, 246, 490 [Google Scholar]
  10. Cornwell, T. J., & Evans, K. 1985, A&A, 143, 77 [Google Scholar]
  11. Dhariwal, P., & Nichol, A. 2021, Adv. Neural Inform. Process. Syst., 34, 8780 [Google Scholar]
  12. Faisst, A. L., Schaerer, D., Lemaux, B. C., et al. 2020, ApJS, 247, 61 [NASA ADS] [CrossRef] [Google Scholar]
  13. Finke, T., Krämer, M., Morandini, A., Mück, A., & Oleksiyuk, I. 2021, J. High Energy Phys., 2021 [Google Scholar]
  14. Franco, M., Elbaz, D., Béthermin, M., et al. 2018, A&A, 620, A152 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  15. Gheller, C., & Vazza, F. 2022, MNRAS, 509, 990 [Google Scholar]
  16. Gull, S. F., & Daniell, G. J. 1978, Nature, 272, 686 [NASA ADS] [CrossRef] [Google Scholar]
  17. Ho, J., Jain, A., & Abbeel, P. 2020, Adv. Neural Inform. Process. Syst., 33, 6840 [Google Scholar]
  18. Högbom, J. 1974, A&AS, 15, 417 [Google Scholar]
  19. Högbom, J. A. 1974, A&AS, 15, 417 [Google Scholar]
  20. Hotan, A., Bunton, J., Chippendale, A., et al. 2021, PASA, 38, e009 [NASA ADS] [CrossRef] [Google Scholar]
  21. Jonas, J., & MeerKAT Team 2016, in MeerKAT Science: On the Pathway to the SKA, 1 [Google Scholar]
  22. Karras, T., Aittala, M., Aila, T., & Laine, S. 2022, Adv. Neural Inform. Process. Syst., 35, 26565 [Google Scholar]
  23. Le Fèvre, O., Béthermin, M., Faisst, A., et al. 2020, A&A, 643, A1 [Google Scholar]
  24. Liu, D., Schinnerer, E., Groves, B., et al. 2019, ApJ, 887, 235 [Google Scholar]
  25. McMullin, J. P., Waters, B., Schiebel, D., Young, W., & Golap, K. 2007, in Astronomical Data Analysis Software and Systems XVI, 376, 127 [Google Scholar]
  26. Mohan, N., & Rafferty, D. 2015, Astrophysics Source Code Library [record ascl:1502.007] [Google Scholar]
  27. Narayan, R., & Nityananda, R. 1986, ARA&A, 24, 127 [Google Scholar]
  28. Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., & Chen, M. 2022, arXiv e-prints [arXiv:2204.06125] [Google Scholar]
  29. Rau, U., & Cornwell, T. J. 2011, A&A, 532, A71 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  30. Ronneberger, O., Fischer, P., & Brox, T. 2015, in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015: 18th International Conference, Munich, Germany, October 5–9, 2015, Proceedings, Part III 18 (Springer), 234 [Google Scholar]
  31. Rudin, L., Osher, S., & Fatemi, E. 1992, Phys. D: Nonlinear Phenomena, 60, 259 [NASA ADS] [CrossRef] [Google Scholar]
  32. Saharia, C., Chan, W., Chang, H., et al. 2022, in ACM SIGGRAPH 2022 Conference Proceedings, 1 [Google Scholar]
  33. Scaife, A. 2020, Philos. Trans. Roy. Soc. A, 378, 20190060 [NASA ADS] [CrossRef] [Google Scholar]
  34. Schmidt, K., Geyer, F., Fröse, S., et al. 2022, A&A, 664, A134 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  35. Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., & Ganguli, S. 2015, in International Conference on Machine Learning, PMLR, 2256 [Google Scholar]
  36. Taran, O., Bait, O., Dessauges-Zavadsky, M., et al. 2023, A&A, 674, A161 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  37. Tikhonov, A. N., & Arsenin, V. Y. 1977, Solutions of Ill-posed Problems (Washington, D.C.: John Wiley & Sons, New York: V. H. Winston & Sons) xiii+258 [Google Scholar]
  38. Tingay, S. J., Goeke, R., Bowman, J. D., et al. 2013, PASA, 30, e007 [Google Scholar]
  39. Tolley, E., Frasch, S., Orliac, E., et al. 2023, arXiv e-prints [arXiv:2310.09200] [Google Scholar]
  40. Van derWalt, S., Schönberger, J. L., Nunez-Iglesias, J., et al. 2014, PeerJ, 2, e453 [CrossRef] [PubMed] [Google Scholar]
  41. van Haarlem, M. P., Wise, M. W., Gunst, A., et al. 2013, A&A, 556, A2 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  42. Vaswani, A., Shazeer, N., Parmar, N., et al. 2017, Adv. Neural Inform. Process. Syst., 30 [Google Scholar]
  43. Walter, F., Decarli, R., Aravena, M., et al. 2016, ApJ, 833, 67 [Google Scholar]
  44. Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. 2004, IEEE Trans. Image Process., 13, 600 [Google Scholar]
  45. Wang, R., Chen, Z., Luo, Q., & Wang, F. 2023, arXiv e-prints [arXiv:2305.09121] [Google Scholar]
  46. Wiener, N. 1949, Extrapolation, Interpolation, and Smoothing of Stationary Time Series, with Engineering Applications (Cambridge: Technology Press of the Massachusetts Institute of Technology) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.