Open Access
Issue |
A&A
Volume 670, February 2023
|
|
---|---|---|
Article Number | A55 | |
Number of page(s) | 16 | |
Section | Numerical methods and codes | |
DOI | https://doi.org/10.1051/0004-6361/202244708 | |
Published online | 03 February 2023 |
- Alamri, S., Kalyankar, N., & Khamitkar, S. 2010, Int. J. Comput. Sci. Eng., 2, 3 [Google Scholar]
- Alhassan, W., Taylor, A., & Vaccari, M. 2018, MNRAS, 480, 2085 [NASA ADS] [CrossRef] [Google Scholar]
- Analyttica Datalab 2018, Gini Coefficient or Gini Index in our Data Science & Analytics platform [Google Scholar]
- Andreon, S., Gargiulo, G., Longo, G., Tagliaferri, R., & Capuano, N. 2000, MNRAS, 319, 700 [Google Scholar]
- Aniyan, A., & Thorat, K. 2017, ApJS, 230, 20 [NASA ADS] [CrossRef] [Google Scholar]
- Apertif Science Team 2016, Apertif Survey Plan II, (Accessed on 06/30/2021) [Google Scholar]
- Aptoula, E., Lefèvre, S., & Collet, C. 2006, in 2006 14th European Signal Processing Conference, 1 [Google Scholar]
- Argueso, F., Sanz, J., Barreiro, R., Herranz, D., & Gonzalez-Nuevo, J. 2006, MNRAS, 373, 311 [NASA ADS] [CrossRef] [Google Scholar]
- Arnoldus, C. 2015, Master’s thesis, University of Groningen, The Netherlands [Google Scholar]
- Bandara, R. 2018, ArXiv e-prints [arXiv: 1509.06851] [Google Scholar]
- Bertin, E., & Arnouts, S. 1996, A&AS, 117, 393 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Bochkovskiy, A., Wang, C., & Liao, H. 2020, ArXiv e-prints [arXiv: 2004.10934] [Google Scholar]
- Böhringer, H., Chon, G., & Trümper, G. 2021, A&A, 651, A16 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Breiman, L., Friedman, J., Stone, C., & Olshen, R. 1984, Classification and Regression Trees (UK: Chapman and Hall/CRC) [Google Scholar]
- Bridle, J. 1990, in Neurocomputing, eds. F. Soulié, & J. Hérault (Berlin, Heidelberg: Springer Berlin Heidelberg), 227 [CrossRef] [Google Scholar]
- Cheng, T., Conselice, C. J., Aragón-Salamanca, A., et al. 2020, MNRAS, 493, 4209 [NASA ADS] [CrossRef] [Google Scholar]
- Christ, P., Elshaer, M. E. A., Ettlinger, F., et al. 2016, in Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016, eds. S. Ourselin, L. Joskowicz, M. Sabuncu, G. Unal, & W. Wells (Cham: Springer International Publishing), 415 [Google Scholar]
- Çiçek, Ö., Abdulkadir, A., Lienkamp, S., Brox, T., & Ronneberger, O. 2016, 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation (Cham: Springer International Publishing), 424 [Google Scholar]
- Cook, S. 2012, CUDA Programming: A Developer’s Guide to Parallel Computing with GPUs, 1st edn, (San Francisco, CA: Morgan Kaufmann Publishers Inc.) [Google Scholar]
- Cunningham, P., & Delany, S. 2007, ACM Comput. Surveys, 54, 1 [Google Scholar]
- De Boer, D., Gough, R. G., Bunton, J. D., et al. 2009, Proc. IEEE, 97, 1507 [NASA ADS] [CrossRef] [Google Scholar]
- Dice, L. 1945, Ecology, 26, 297 [CrossRef] [Google Scholar]
- Fernandez-Delgado, M., Cernadas, E., Barro, S., & Amorim, D. 2014, J. Mach. Learn. Res., 15, 3133 [Google Scholar]
- Flewelling, H., Magnier, E. A., Chambers, K. C., et al. 2020, ApJS 251, 7 [NASA ADS] [CrossRef] [Google Scholar]
- Fukushima, K. 1975, Biological Cybernetics, 20, 121 [CrossRef] [Google Scholar]
- Gheller, C., Vazza, F., & Bonafede, A. 2018, MNRAS, 480, 3749 [NASA ADS] [CrossRef] [Google Scholar]
- Gogate, A. 2022, PhD thesis, University of Groningen, The Netherlands [Google Scholar]
- Goodfellow, I., Bengio, Y., & Courville, A. 2016, Deep Learning (USA: MIT Press) [Google Scholar]
- Haigh, C., Chamba, N., Venhola, A., et al. 2021, A&A, 645, A107 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- He, K., Zhang, X., Ren, S., & Sun, J. 2015, ArXiv e-prints [arXiv:1502.01852] [Google Scholar]
- Hibbard, J. E., van Gorkom, J. H., Rupen, M. P., & Schiminovich, D. 2001, ASP Conf. Ser., 240, 657 [NASA ADS] [Google Scholar]
- Ho, T. 1995, Proceedings of 3rd International Conference on Document Analysis and Recognition, 1, 278 [Google Scholar]
- Hogbom, J., & Brouw, W. 1974, A&A, 33, 289 [NASA ADS] [Google Scholar]
- Igel, C., & Hüsken, M. 2000, Improving the Rprop Learning Algorithm [Google Scholar]
- Jarvis, J., & Tyson, J. 1981, AJ, 86, 476 [NASA ADS] [CrossRef] [Google Scholar]
- Jonas, J. L. 2009, Proc. IEEE, 97, 1522 [NASA ADS] [CrossRef] [Google Scholar]
- Jurek, R. 2012, PASA, 29, 251 [NASA ADS] [CrossRef] [Google Scholar]
- Kaur, D., & Kaur, Y. 2014, Int. J. Comput. Sci. Mobile Comput., 3, 809 [Google Scholar]
- Kingma, D., & Ba, J. 2015, in 3rd International Conference for Learning Representations, San Diego [Google Scholar]
- Levine, M., & Nazif, A. 1981, An Experimental Rule-based System for Testing Low Level Segmentation Strategies (Canada: McGill University) [Google Scholar]
- Lintott, C., et al. 2008, MNRAS, 389, 1179 [NASA ADS] [CrossRef] [Google Scholar]
- Long, J., Shelhamer, E., & Darrell, T. 2014, ArXiv e-prints [arXiv: 1411.4038] [Google Scholar]
- Lukic, V., De Gasperin, F., & Brüggen, M. 2019, Galaxies, 8, 3 [NASA ADS] [CrossRef] [Google Scholar]
- Martinsson, T., Verheijen, M., Bershady, M. A., et al. 2016, A&A, 585, A99 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Masias, M., Freixenet, J., Lladó, X., & Peracaula, M. 2012, MNRAS, 422, 1674 [NASA ADS] [CrossRef] [Google Scholar]
- Meyer, M., Robotham, A., Obreschkow, D., et al. 2017, PASA, 34, 52 [Google Scholar]
- Milletari, F., Navab, N., & Ahmadi, S. 2016, Proceedings - 2016 4th International Conference on 3D Vision, 565 [Google Scholar]
- Moschini, U. 2016, PhD thesis, University of Groningen, The Netherlands [Google Scholar]
- Nikolaos, A. 2019, Master’s thesis, University of Patras, Greece [Google Scholar]
- O’Mahony, N., Campbell, S., Carvalho, A., et al. 2019, ArXiv e-prints [arXiv:1910.13796] [Google Scholar]
- Ouzounis, G. K., & Wilkinson, M. H. F. 2007, IEEE Transac. Pattern Anal. Mach. Intell., 29, 990 [CrossRef] [Google Scholar]
- Paszke, A., Gross, S., Massa, F., et al. 2019, in Advances in Neural Information Processing Systems 32, eds. H. Wallach, H. Larochelle, A. Beygelzimer, et al. (Curran Associates, Inc.), 8024 [Google Scholar]
- Pedregosa, F., Varoquaux, G., Gramfort, A., et al. 2011, J. Mach. Learn. Res., 12, 2825 [Google Scholar]
- Perona, P., & Malik, J. 1990, IEEE Transac. Pattern Anal. Mach. Intell., 12, 629 [CrossRef] [Google Scholar]
- Persic, M., Salucci, P., & Ste, F. 1996, MNRAS, 281, 27 [NASA ADS] [CrossRef] [Google Scholar]
- Popping, A., Jurek, R., Westmeier, T., et al. 2012, PASA, 29, 318 [NASA ADS] [CrossRef] [Google Scholar]
- Punzo, D., van der Hulst, J., Roerdink, J., et al. 2015, Astron. Comput., 12, 86 [NASA ADS] [CrossRef] [Google Scholar]
- Ronneberger, O., Fischer, P., & Brox, T. 2015, in Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015, eds. N. Navab, J. Hornegger, & A. Wells, W. M. Frangi (Cham: Springer International Publishing), 234 [CrossRef] [Google Scholar]
- Salembier, P., Oliveras, A., & Garrido, L. 1998, IEEE Transac. Image Process., 7, 555 [CrossRef] [Google Scholar]
- Samudre, A., George, L., Bansal, M., & Wadadekar, Y. 2022, MNRAS, 509, 2269 [NASA ADS] [Google Scholar]
- Sebastian, R. 2016, ArXiv e-prints [arXiv: 1609.04747] [Google Scholar]
- Serra, J. 1988, Image Analysis and Mathematical Morphology, Theoretical Advances (New York: Academic Press), 2 [Google Scholar]
- Serra, P., Westmeier, T., Giese, N., et al. 2015, MNRAS, 448, 1922 [Google Scholar]
- Serra, P., Jurek, R., & Flöer, L. 2012, PASA, 29, 296 [Google Scholar]
- Sørensen, T. 1948, Kongelige Danske Videnskabernes Selskab [Google Scholar]
- Suppes, P. 1957, Introduction to Logic (New York: Van Nostrand), 312 [Google Scholar]
- Teeninga, P., Moschini, U., Trager, S. C., & Wilkinson, M. H. F. 2013, in 11th International Conference, Pattern Recognition and Image Analysis: New Information Technologies (PRIA-11-2013), 746 [Google Scholar]
- Teeninga, P., Moschini, U., Trager, S. C., & Wilkinson, M. H. F. 2016, Mathematical Morphology - Theory and Applications (Hoboken: John Wiley & Sons), 1, 100 [Google Scholar]
- Tody, D. 1986, SPIE Conf. Ser., 627, 733 [Google Scholar]
- Valverde, S., Cabezas, M., Roura, E., et al. 2017, ArXiv e-prints [arXiv:1702.04869] [Google Scholar]
- van Cappellen, W. A., Oosterloo, T. A., Verheijen, M. A. W., et al. 2022, A&A, 658, A146 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- van der Hulst, J., Terlouw, J., Begeman, K., Zwitser, W., & Roelfsema, P. 1992, Astronomical Data Analysis Software and Systems I, 25, 131 [NASA ADS] [Google Scholar]
- van Rijsbergen, C. 1979, Information Retrieval (London: Butterworths), 2 [Google Scholar]
- Vapnik, V. 1995, Support-Vector Networks [Google Scholar]
- Weltman, A., Bull, P., Camera, S., et al. 2020, PASA, 37, e002 [Google Scholar]
- Westmeier, T., Kitaeff, S., Pallot, D., et al. 2021, MNRAS, 506, 3962 [NASA ADS] [CrossRef] [Google Scholar]
- Wright, M. 1974, Galactic and Extragalactic Radio Astronomy (Berlin: Springer) [Google Scholar]
- Yang, A., Pan, F., Saragadam, V., et al. 2021, in Proceedings of the IeEe/CvF Winter Conference on Applications of Computer Vision (WACV), 335 [Google Scholar]
- Zaitoun, N. M., & Aqel, M.J. 2015, Procedia Comput. Sci., 65, 797 [CrossRef] [Google Scholar]
- Zhi, S., Liu, Y., Li, X., & Guo, Y. 2018, Comput. Graph., 71, 199 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.