Open Access
Issue
A&A
Volume 670, February 2023
Article Number A54
Number of page(s) 13
Section Numerical methods and codes
DOI https://doi.org/10.1051/0004-6361/202243928
Published online 03 February 2023
  1. Abadi, M., Agarwal, A., Barham, P., et al. 2015, TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems, software available from tensorflow.org [Google Scholar]
  2. Alcock, C., Allsman, R., Alves, D. R., et al. 1999, PASP, 111, 1539 [NASA ADS] [CrossRef] [Google Scholar]
  3. Alcock, C., Allsman, R., Alves, D. R., et al. 2000, ApJ, 542, 281 [NASA ADS] [CrossRef] [Google Scholar]
  4. Alcock, C., Allsman, R., Alves, D., et al. 2003, VizieR Online Data Catalog: II/247 [Google Scholar]
  5. Allam Jr, T., & McEwen, J. D. 2021, ArXiv e-prints [arXiv:2105.06178] [Google Scholar]
  6. Ba, J. L., Kiros, J. R., & Hinton, G. E. 2016, ArXiv e-prints [arXiv: 1607.06450] [Google Scholar]
  7. Becker, I., Pichara, K., Catelan, M., et al. 2020, MNRAS, 493, 2981 [NASA ADS] [CrossRef] [Google Scholar]
  8. Bishop, C. M. 1995, Neural Comput., 7, 108 [CrossRef] [Google Scholar]
  9. Catelan, M. 2004, in International Astronomical Union Colloquium, 193 (Cambridge University Press), 113 [CrossRef] [Google Scholar]
  10. Catelan, M., & Smith, H. A. 2015, Pulsating Stars (John Wiley & Sons) [Google Scholar]
  11. Charnock, T., & Moss, A. 2017, ApJ, 837, L28 [NASA ADS] [CrossRef] [Google Scholar]
  12. de Vries, W., van Cranenburgh, A., Bisazza, A., et al. 2019, ArXiv e-prints [arXiv:1912.09582] [Google Scholar]
  13. Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. 2018, ArXiv e-prints [arXiv:1810.04805] [Google Scholar]
  14. Dhar, P. 2020, Nat. Mach. Intell., 2, 423 [CrossRef] [Google Scholar]
  15. Donoso-Oliva, C., Cabrera-Vives, G., Protopapas, P., Carrasco-Davis, R., & Estevez, P. 2021, MNRAS, 505, 6069 [CrossRef] [Google Scholar]
  16. Glorot, X., & Bengio, Y. 2010, in Proceedings of the thirteenth international conference on artificial intelligence and statistics, JMLR Workshop and Conference Proceedings, 249 [Google Scholar]
  17. Heinze, A., Tonry, J. L., Denneau, L., et al. 2018, AJ, 156, 241 [NASA ADS] [CrossRef] [Google Scholar]
  18. Ioffe, S., & Szegedy, C. 2015, in International conference on machine learning, PMLR, 448 [Google Scholar]
  19. Ivezic, Ž., Kahn, S. M., Tyson, J. A., et al. 2019, ApJ, 873, 111 [NASA ADS] [CrossRef] [Google Scholar]
  20. Jamal, S., & Bloom, J. S. 2020, ApJS, 250, 30 [NASA ADS] [CrossRef] [Google Scholar]
  21. Kingma, D. P., & Ba, J. 2014, ArXiv e-prints [arXiv: 1412.6980] [Google Scholar]
  22. Kremer, J., Stensbo-Smidt, K., Gieseke, F., Pedersen, K. S., & Igel, C. 2017, IEEE Intell. Syst., 32, 16 [CrossRef] [Google Scholar]
  23. LeCun, Y., Bengio, Y., & Hinton, G. 2015, Nature, 521, 436 [Google Scholar]
  24. Liu, Y., Ott, M., Goyal, N., et al. 2019, ArXiv e-prints [arXiv:1907.11692] [Google Scholar]
  25. Liu, X., Zhang, F., Hou, Z., et al. 2021, IEEE Trans. Knowl. Data Eng., 1 [Google Scholar]
  26. Masala, M., Ruseti, S., & Dascalu, M. 2020, in Proceedings of the 28th International Conference on Computational Linguistics, 6626 [Google Scholar]
  27. Moradshahi, M., Palangi, H., Lam, M. S., Smolensky, P., & Gao, J. 2019, ArXiv e-prints [arXiv: 1910.12647] [Google Scholar]
  28. Naul, B., Bloom, J. S., Pérez, F., & van der Walt, S. 2018, Nat. Astron., 2, 151 [NASA ADS] [CrossRef] [Google Scholar]
  29. Pan, J., Ting, Y.-S., & Yu, J. 2022, ArXiv e-prints [arXiv:2207.02787] [Google Scholar]
  30. Patel, S. 2020, PhD thesis, The Cooper Union for the Advancement of Science and Art [Google Scholar]
  31. Pimentel, Ó., Estévez, P. A., & Förster, F. 2023, AJ, 165, 18 [NASA ADS] [CrossRef] [Google Scholar]
  32. Polignano, M., Basile, P., De Gemmis, M., Semeraro, G., & Basile, V. 2019, in 6th Italian Conference on Computational Linguistics, CLiC-it 2019, 2481, CEUR, 1 [Google Scholar]
  33. Sánchez-Sáez, P., Reyes, I., Valenzuela, C., et al. 2021, AJ, 161, 141 [CrossRef] [Google Scholar]
  34. Semeniuta, S., Severyn, A., & Barth, E. 2016, ArXiv e-prints [arXiv:1603.05118] [Google Scholar]
  35. Szymanski, M., Udalski, A., Soszyński, I., et al. 2011, Acta Astron., 61, 83 [NASA ADS] [Google Scholar]
  36. Tensorflow 2022, Positional encoding Transformer model for language understanding [Google Scholar]
  37. Tonry, J., Denneau, L., Heinze, A., et al. 2018, PASP, 130, 064505 [NASA ADS] [CrossRef] [Google Scholar]
  38. Tsang, B. T.-H., & Schultz, W. C. 2019, ApJ, 877, L14 [NASA ADS] [CrossRef] [Google Scholar]
  39. Udalski, A. 2003, Acta Astron., 53, 291 [NASA ADS] [Google Scholar]
  40. Udalski, A., Szymanski, M., & Szymanski, G. 2015, Acta Astron., 65, 1 [NASA ADS] [Google Scholar]
  41. Vaswani, A., Shazeer, N., Parmar, N., et al. 2017, in Advances in Neural Information Processing Systems, 5998 [Google Scholar]
  42. Vunikili, R., Supriya, H., Marica, V. G., & Farri, O. 2020, in IberLEF@ SEPLN, 505 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.