Open Access
Issue
A&A
Volume 667, November 2022
Article Number A104
Number of page(s) 18
Section Planets and planetary systems
DOI https://doi.org/10.1051/0004-6361/202142486
Published online 15 November 2022
  1. Ahrer, E., Queloz, D., Rajpaul, V. M., et al. 2021, MNRAS, 503, 1248 [NASA ADS] [CrossRef] [Google Scholar]
  2. Aigrain, S., Pont, F., & Zucker, S. 2012, MNRAS, 419, 3147 [NASA ADS] [CrossRef] [Google Scholar]
  3. Akaike, H. 1969, Ann. Inst. Stat. Math., 21, 243 [CrossRef] [Google Scholar]
  4. Ambikasaran, S., Foreman-Mackey, D., Greengard, L., Hogg, D. W., & O’Neil, M. 2015, IEEE Trans. Pattern Anal. Mach. Intell., 38, 252 [Google Scholar]
  5. Anglada-Escude, G., Arriagada, P., Tuomi, M., et al. 2014, MNRAS, 443, L89 [NASA ADS] [CrossRef] [Google Scholar]
  6. Appourchaux, T., Boumier, P., Leibacher, J. W., & Corbard, T. 2018, A&A, 617, A108 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  7. Baluev, R. V. 2008, MNRAS, 385, 1279 [Google Scholar]
  8. Baluev, R. V. 2011, Celest. Mech. Dyn. Astron., 111, 235 [NASA ADS] [CrossRef] [Google Scholar]
  9. Baluev, R. V. 2013a, Astron. Comput., 2, 18 [NASA ADS] [CrossRef] [Google Scholar]
  10. Baluev, R. V. 2013b, MNRAS, 429, 2052 [Google Scholar]
  11. Baluev, R. V. 2015, MNRAS, 446, 1493 [Google Scholar]
  12. Barragán, O., Aigrain, S., Rajpaul, V. M., & Zicher, N. 2022, MNRAS, 509, 866 [Google Scholar]
  13. Bayarri, M. J., & Berger, J. O. 2000, J. Am. Stat. Assoc., 95, 1127 [Google Scholar]
  14. Berk, R., & Jones, D. 1979, Z. Wahrscheinlichkeit, 47, 47 [CrossRef] [Google Scholar]
  15. Boisse, I., Bouchy, F., Hébrard, G., et al. 2011, A&A, 528, A4 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  16. Bortle, A., Fausey, H., Ji, J., et al. 2021, AJ, 161, 230 [NASA ADS] [CrossRef] [Google Scholar]
  17. Bourguignon, S., Carfantan, H., & Böhm, T. 2007, A&A, 462, 379 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  18. Box, G. E. P. 1980, J. Roy. Stat. Soc. A (General), 143, 383 [CrossRef] [Google Scholar]
  19. Brockwell, P., & Davis, R. 1991, Time Series: Theory and Methods (Springer) Carleo, I., Malavolta, L., Lanza, A. F., et al. 2020, A&A, 638, A5 [Google Scholar]
  20. Chiu, S.-T. 1989, J. Roy. Stat. Soc. B (Methodological), 51, 249 [CrossRef] [Google Scholar]
  21. Coles, S. G. 2001, An Introduction to Statistical Modelling of Extreme Values (Springer-Verlag) [CrossRef] [Google Scholar]
  22. Collier Cameron, A., Mortier, A., Phillips, D., et al. 2019, MNRAS, 487, 1082 [Google Scholar]
  23. Collier Cameron, A., Ford, E. B., Shahaf, S., et al. 2021, MNRAS, 505, 1699 [NASA ADS] [CrossRef] [Google Scholar]
  24. Cretignier, M., Dumusque, X., Hara, N. C., & Pepe, F. 2021, A&A, 653, A43 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  25. Cumming, A. 2004, MNRAS, 354, 1165 [Google Scholar]
  26. Cumming, A., Marcy, G. W., & Butler, R. P. 1999, ApJ, 526, 890 [Google Scholar]
  27. Cunha, D., Santos, N. C., Figueira, P., et al. 2014, A&A, 568, A35 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  28. Davis, A. B., Cisewski, J., Dumusque, X., Fischer, D. A., & Ford, E. B. 2017, ApJ, 846, 59 [NASA ADS] [CrossRef] [Google Scholar]
  29. de Beurs, Z. L., Vanderburg, A., Shallue, C. J., et al. 2022, AJ, 164, 49 [NASA ADS] [CrossRef] [Google Scholar]
  30. Delisle, J. B., Hara, N., & Ségransan, D. 2020, A&A, 635, A83 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  31. Donoho, D., & Jin, J. 2004, Ann. Stat., 32, 962 [Google Scholar]
  32. Donoho, D. L., & Johnstone, I. M. 1994, Biometrika, 81, 425 [Google Scholar]
  33. Dumusque, X. 2018, A&A, 620, A47 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  34. Dumusque, X., Udry, S., Lovis, C., Santos, N. C., & Monteiro, M. J. P. F. G. 2011, A&A, 525, A140 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  35. Dumusque, X., Pepe, F., Lovis, C., et al. 2012, Nature, 491, 207 [Google Scholar]
  36. Dumusque, X., Cretignier, M., Sosnowska, D., et al. 2021, A&A, 648, A103 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  37. Efron, B., & Hastie, T. 2016, Computer Age Statistical Inference: Algorithms, Evidence, and Data Science, Institute of Mathematical Statistics Monographs (Cambridge University Press) [Google Scholar]
  38. Elorrieta, F., Eyheramendy, S., & Palma, W. 2019, A&A, 627, A120 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  39. Espinoza, N., Kossakowski, D., & Brahm, R. 2019, MNRAS, 490, 2262 [Google Scholar]
  40. Ferraz-Mello, S. 1981, AJ, 86, 619 [NASA ADS] [CrossRef] [Google Scholar]
  41. Fischer, D. A., Anglada-Escude, G., Arriagada, P., et al. 2016, PASP, 128, 066001 [Google Scholar]
  42. Gregory, P. C. 2016, MNRAS, 458, 2604 [NASA ADS] [CrossRef] [Google Scholar]
  43. Guttman, I. 1967, J. Roy. Stat. Soc. B (Methodological), 29, 83 [CrossRef] [Google Scholar]
  44. Hanasoge, S. M., Duvall, T.L., & Sreenivasan, K. R. 2012, Proc. Natl. Acad. Sci. U.S.A., 109, 11928 [NASA ADS] [CrossRef] [Google Scholar]
  45. Hara, N. C., Boué, G., Laskar, J., & Correia, A. C. M. 2017, MNRAS, 464, 1220 [Google Scholar]
  46. Hara, N. C., Delisle, J.-B., Unger, N., & Dumusque, X. 2022, A&A, 658, A177 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  47. Harvey, J. 1985, in ESA Special Publication, Future Missions in Solar, Heliospheric & Space Plasma Physics, eds. E. Rolfe, & B. Battrick, 235, 199 [NASA ADS] [Google Scholar]
  48. Hatzes, A. P. 2013, ApJ, 770, 133 [NASA ADS] [CrossRef] [Google Scholar]
  49. Hatzes, A. P., Fridlund, M., Nachmani, G., et al. 2011, ApJ, 743, 75 [NASA ADS] [CrossRef] [Google Scholar]
  50. Hatzes, A. P., Cochran, W. D., Endl, M., et al. 2015, A&A, 580, A31 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  51. Horne, J. H., & Baliunas, S. L. 1986, ApJ, 302, 757 [Google Scholar]
  52. Jenkins, J. S., & Tuomi, M. 2014, ApJ, 794, 110 [NASA ADS] [CrossRef] [Google Scholar]
  53. Jenkins, J. S., Yoma, N. B., Rojo, P., Mahu, R., & Wuth, J. 2014, MNRAS, 441, 2253 [NASA ADS] [CrossRef] [Google Scholar]
  54. Jones, D. E., Stenning, D. C., Ford, E. B., et al. 2022, Ann. Appl. Stat., 16, 652 [Google Scholar]
  55. Jurgenson, C. et al. 2016, Proc. SPIE, 9908 99086T [NASA ADS] [CrossRef] [Google Scholar]
  56. Kay, S. M. 1998, Fundamentals of Statistical Signal Processing: Detection Theory, 1st edn., 2 (Prentice-Hall PTR) [Google Scholar]
  57. Mary, D., & Roquain, E. 2021, ArXiv e-prints, [arXiv:2106.13501] [Google Scholar]
  58. Ment, K., Fischer, D. A., Bakos, G., Howard, A. W., & Isaacson, H. 2018, AJ, 156, 213 [NASA ADS] [CrossRef] [Google Scholar]
  59. Meunier, N. 2021, in Proceedings of the Evry Schatzman School 2019 “Interactions star-planet”, eds. L. Bigot, J. Bouvier, Y. Lebreton, & A. Chiavassa [Google Scholar]
  60. Meunier, N., & Lagrange, A. M. 2019, A&A, 625, A6 [Google Scholar]
  61. Meunier, N., & Lagrange, A. M. 2020, A&A, 638, A54 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  62. Meunier, N., Lagrange, A. M., Borgniet, S., & Rieutord, M. 2015, A&A, 583, A118 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  63. Meunier, N., Lagrange, A. M., & Borgniet, S. 2017, A&A, 607, A6 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  64. Newville, M., Stensitzki, T., Allen, D. B., & Ingargiola, A. 2014, LMFIT: NonLinear Least-Square Minimization and Curve-Fitting for Python [Google Scholar]
  65. Noyes, R. W., Hartmann, L. W., Baliunas, S. L., Duncan, D. K., & Vaughan, A. H. 1984, ApJ, 279, 763 [Google Scholar]
  66. Paltani, S. 2004, A&A, 420, 789 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  67. Palumbo, I., Michael, L., Ford, E. B., Wright, J. T., et al. 2022, ApJ, 163, 11 [CrossRef] [Google Scholar]
  68. Pepe, F. A. et al. 2010, in Proc. SPIE, Ground-based and Airborne Instrumentation for Astronomy III, 7735 [Google Scholar]
  69. Queloz, D., Henry, G. W., Sivan, J. P., et al. 2001, A&A, 379, 279 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  70. Rajpaul, V., Aigrain, S., Osborne, M. A., Reece, S., & Roberts, S. 2015, MNRAS, 452, 2269 [Google Scholar]
  71. Rajpaul, V., Aigrain, S., & Roberts, S. 2016, MNRAS, 456, L6 [CrossRef] [Google Scholar]
  72. Rajpaul, V. M., Buchhave, L. A., Lacedelli, G., et al. 2021, MNRAS, 507, 1847 [NASA ADS] [CrossRef] [Google Scholar]
  73. Rasmussen, C. E., & Williams, C. K. I. 2005, Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning) (The MIT Press) Reegen, P. 2007, A&A, 467, 1353 [Google Scholar]
  74. Reichert, K., Reffert, S., Stock, S., Trifonov, T., & Quirrenbach, A. 2019, A&A, 625, A22 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  75. Rincon, F., & Rieutord, M. 2018, Living Rev. Solar Phys., 15, 6 [NASA ADS] [CrossRef] [Google Scholar]
  76. Roquain, E., & Verzelen, N. 2022, Ann. Stat., 50, 1095 [CrossRef] [Google Scholar]
  77. Rubin, D. B. 1984, Ann. Stat., 1151 [Google Scholar]
  78. Santos, N. C., Mortier, A., Faria, J. P., et al. 2014, A&A, 566, A35 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  79. Scargle, J. D. 1982, ApJ, 263, 835 [Google Scholar]
  80. Schwarzenberg-Czerny, A. 1998, MNRAS, 301, 831 [NASA ADS] [CrossRef] [Google Scholar]
  81. Schwarzenberg-Czerny, A. 2012, in New Horizons in Time Domain Astronomy, eds. E. Griffin, R. Hanisch, & R. Seaman, 285, 81 [NASA ADS] [Google Scholar]
  82. Seifahrt, A., Käufl, H. U., Zängl, G., et al. 2010, A&A, 524, A11 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  83. Shimshoni, M. 1971, Geophys. J., 23, 373 [NASA ADS] [CrossRef] [Google Scholar]
  84. Sulis, S. 2017, Ph.D. Thesis, Université Côte-d’Azur, Nice, France [Google Scholar]
  85. Sulis, S., Mary, D., & Bigot, L. 2016, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 4428 [Google Scholar]
  86. Sulis, S., Mary, D., & Bigot, L. 2017a, IEEE TSP, 65, 2136 [NASA ADS] [Google Scholar]
  87. Sulis, S., Mary, D., & Bigot, L. 2017b, in 2017 25th European Signal Processing Conference (EUSIPCO), 1095 [CrossRef] [Google Scholar]
  88. Sulis, S., Mary, D., & Bigot, L. 2020, A&A, 635, A146 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  89. Süveges, M. 2014, MNRAS, 440, 2099 [CrossRef] [Google Scholar]
  90. Süveges, M., Guy, L. P., Eyer, L., et al. 2015, MNRAS, 450, 2052 [CrossRef] [Google Scholar]
  91. Tal-Or, L., Zechmeister, M., Reiners, A., et al. 2018, A&A, 614, A122 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  92. Toulis, P., & Bean, J. 2021, ArXiv e-prints, [arXiv:2105.14222] [Google Scholar]
  93. Tuomi, M., Jones, H. R. A., Barnes, J. R., Anglada-Escudé, G., & Jenkins, J. S. 2014, MNRAS, 441, 1545 [Google Scholar]
  94. Tuomi, M., Jones, H. R. A., Barnes, J. R., et al. 2018, AJ, 155, 192 [NASA ADS] [CrossRef] [Google Scholar]
  95. Udry, S., Mayor, M., Clausen, J. V., et al. 2003, A&A, 407, 679 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  96. Wilson, O. C. 1968, ApJ, 153, 221 [Google Scholar]
  97. Yu, J., Huber, D., Bedding, T. R., & Stello, D. 2018, MNRAS, 480, L48 [Google Scholar]
  98. Zechmeister, M., & Kürster, M. 2009, A&A, 496, 577 [CrossRef] [EDP Sciences] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.