Free Access
Issue |
A&A
Volume 664, August 2022
|
|
---|---|---|
Article Number | A51 | |
Number of page(s) | 12 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361/202039551 | |
Published online | 08 August 2022 |
- Bishop, C. M. 2006, Pattern Recognition and Machine Learning (Information Science and Statistics) (Secaucus, NJ, USA: Springer-Verlag New York, Inc.) [Google Scholar]
- Bowles, N. E., Snodgrass, C., Gibbings, A., et al. 2018, Adv. Space Res., 62, 1998 [NASA ADS] [CrossRef] [Google Scholar]
- Brown, G. 2017, Ensemble Learning, eds. C. Sammut, & G. I. Webb (Boston, MA: Springer US), 393 [Google Scholar]
- Bus, S. J., & Binzel, R. P. 2002a, Icarus, 158, 146 [Google Scholar]
- Bus, S. J., & Binzel, R. P. 2002b, Icarus, 158, 106 [CrossRef] [Google Scholar]
- Carry, B., Solano, E., Eggl, S., & DeMeo, F. E. 2016, Icarus, 268, 340 [CrossRef] [Google Scholar]
- Carvano, J. M., Hasselmann, P. H., Lazzaro, D., & Mothé-Diniz, T. 2010, A&A, 510, A43 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Chapelle, O., Schlkopf, B., & Zien, A. 2010, Semi-Supervised Learning, 1st edn. (The MIT Press) [Google Scholar]
- Chapman, C. R., Johnson, T. V., & McCord, T. B. 1971, A Review of Spectrophotometric Studies of Asteroids, ed. T. Gehrels, 267, 51 [Google Scholar]
- Chapman, C. R., Morrison, D., & Zellner, B. 1975, Icarus, 25, 104 [NASA ADS] [CrossRef] [Google Scholar]
- Chen, W.-C., & Maitra, R. 2015, EMCluster: EM Algorithm for Model-Based Clustering of Finite Mixture Gaussian Distribution, R Package, URL http://cran.r-project.org/package=EMCluster [Google Scholar]
- Cozman, F. G., Cohen, I., & Cirelo, M. C. 2003, in Proceedings of the Twentieth International Conference on International Conference on Machine Learning, ICML’03 (AAAI Press), 99 [Google Scholar]
- DeMeo, F. E., & Carry, B. 2013, Icarus, 226, 723 [NASA ADS] [CrossRef] [Google Scholar]
- DeMeo, F. E., Binzel, R. P., Slivan, S. M., & Bus, S. J. 2009, Icarus, 202, 160 [Google Scholar]
- DeMeo, F. E., Binzel, R. P., Carry, B., Polishook, D., & Moskovitz, N. A. 2014, Icarus, 229, 392 [NASA ADS] [CrossRef] [Google Scholar]
- Dundar, M., Krishnapuram, B., Bi, J., & Rao, R. B. 2007, in Proceedings of the 20th International Joint Conference on Artifical Intelligence, IJCAI’07 (San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.), 756 [Google Scholar]
- Erasmus, N., McNeill, A., Mommert, M., et al. 2018, ApJS, 237, 19 [NASA ADS] [CrossRef] [Google Scholar]
- Erasmus, N., McNeill, A., Mommert, M., et al. 2019, ApJS, 242, 15 [NASA ADS] [CrossRef] [Google Scholar]
- Ghosh, J., & Acharya, A. 2011, WIREs Data Mining and Knowledge Discovery, 1, 305 [CrossRef] [Google Scholar]
- Grav, T., Mainzer, A. K., Bauer, J., et al. 2012a, ApJ, 744, 197 [NASA ADS] [CrossRef] [Google Scholar]
- Grav, T., Mainzer, A. K., Bauer, J. M., Masiero, J. R., & Nugent, C. R. 2012b, ApJ, 759, 49 [NASA ADS] [CrossRef] [Google Scholar]
- Hasselmann, P. H., Fulchignoni, M., Carvano, J. M., Lazzaro, D., & Barucci, M. A. 2015, A&A, 577, A147 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Hastie, D. I., Liverani, S., & Richardson, S. 2015, Stat. Comput., 25, 1023 [CrossRef] [Google Scholar]
- Ivezić, Ž., Tabachnik, S., Rafikov, R., et al. 2001, AJ, 122, 2749 [Google Scholar]
- Ivezić, Ž., Lupton, R. H., Juric, M., et al. 2002, AJ, 124, 2943 [CrossRef] [Google Scholar]
- Jones, R. L., Juric, M., & Ivezic, Ž. 2016, in IAU Symposium, 318, Asteroids: New Observations, New Models, eds. S. R. Chesley, A. Morbidelli, R. Jedicke, & D. Farnocchia, 282 [Google Scholar]
- Kiar, A. K., Barmby, P., & Hidalgo, A. 2017, MNRAS, 472, 1074 [CrossRef] [Google Scholar]
- Kitamura, M. 1959, PASJ, 11, 79 [Google Scholar]
- Lazzarin, M., Barbieri, C., & Barucci, M. A. 1995, AJ, 110, 3058 [NASA ADS] [CrossRef] [Google Scholar]
- Lazzaro, D., Angeli, C. A., Carvano, J. M., et al. 2004, Icarus, 172, 179 [NASA ADS] [CrossRef] [Google Scholar]
- Liverani, S., Hastie, D., Azizi, L., Papathomas, M., & Richardson, S. 2015, J. Stat. Softw., 64, 1 [CrossRef] [Google Scholar]
- Mainzer, A., Bauer, J., Grav, T., et al. 2011, ApJ, 731, 53 [Google Scholar]
- Masiero, J. R., Mainzer, A. K., Grav, T., et al. 2011, ApJ, 741, 68 [Google Scholar]
- McSween, Harry Y. J. 1999, Meteorites and their Parent Planets [Google Scholar]
- Mothé-Diniz, T., Carvano, J. M. Á., & Lazzaro, D. 2003, Icarus, 162, 10 [CrossRef] [Google Scholar]
- Nguyen, T. T., Luong, A. V., Dang, M. T., Liew, A. W.-C., & McCall, J. 2020, Pattern Recogn., 100, 107104 [NASA ADS] [CrossRef] [Google Scholar]
- Parker, A., Ivezicć, Ž., Juricć, M., et al. 2008, Icarus, 198, 138 [NASA ADS] [CrossRef] [Google Scholar]
- Popescu, M., Licandro, J., Carvano, J. M., et al. 2018, A&A, 617, A12 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Rasmussen, C. E. 1999, in Proceedings of the 12th International Conference on Neural Information Processing Systems, NIPS’99 (Cambridge, MA, USA: MIT Press), 554 [Google Scholar]
- Sagi, O., & Rokach, L. 2018, WIREs Data Mining Knowledge Discov., 8, e1249 [CrossRef] [Google Scholar]
- Shin, M.-S., Sekora, M., & Byun, Y.-I. 2009, MNRAS, 400, 1897 [NASA ADS] [CrossRef] [Google Scholar]
- Shin, M.-S., Yi, H., Kim, D.-W., Chang, S.-W., & Byun, Y.-I. 2012, AJ, 143, 65 [NASA ADS] [CrossRef] [Google Scholar]
- Shin, M.-S., Chang, S.-W., Yi, H., et al. 2018, AJ, 156, 201 [NASA ADS] [CrossRef] [Google Scholar]
- Strehl, A., & Ghosh, J. 2003, J. Mach. Learn. Res., 3, 583 [Google Scholar]
- Tedesco, E. F., Williams, J. G., Matson, D. L., et al. 1989, AJ, 97, 580 [NASA ADS] [CrossRef] [Google Scholar]
- Tholen, D. J. 1984, PhD thesis, University of Arizona, Tucson, USA [Google Scholar]
- Wolpert, D. H. 1992, Neural Netw., 5, 241 [CrossRef] [Google Scholar]
- Zellner, B. 1973, in BAAS, 5, 388 [NASA ADS] [Google Scholar]
- Zellner, B., Tholen, D. J., & Tedesco, E. F. 1985, Icarus, 61, 355 [NASA ADS] [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.