Free Access
Issue
A&A
Volume 663, July 2022
Article Number A81
Number of page(s) 18
Section Extragalactic astronomy
DOI https://doi.org/10.1051/0004-6361/202243354
Published online 14 July 2022
  1. Adamo, A., Hollyhead, K., Messa, M., et al. 2020, MNRAS, 499, 3267 [Google Scholar]
  2. Aizerman, M. A. 1964, Autom. Remote Control, 25, 821 [Google Scholar]
  3. Amorisco, N. C., Monachesi, A., Agnello, A., & White, S. D. M. 2018, MNRAS, 475, 4235 [NASA ADS] [CrossRef] [Google Scholar]
  4. Arik, S. O., & Pfister, T. 2021, Proceedings of the AAAI Conference on Artificial Intelligence, 35, 6679 [Google Scholar]
  5. Arrieta, A. B., Díaz-Rodríguez, N., Del Ser, J., et al. 2020, Inf. Fusion, 58, 82 [CrossRef] [Google Scholar]
  6. Ashman, K. M., & Zepf, S. E. 1992, ApJ, 384, 50 [Google Scholar]
  7. Astropy Collaboration (Robitaille, T. P., et al.) 2013, A&A, 558, A33 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  8. Astropy Collaboration (Price-Whelan, A. M., et al.) 2018, AJ, 156, 123 [Google Scholar]
  9. Beasley, M. A. 2020, Globular Cluster Systems and Galaxy Formation (Cham: Springer International Publishing), 245 [Google Scholar]
  10. Beasley, M. A., Baugh, C. M., Forbes, D. A., Sharples, R. M., & Frenk, C. S. 2002, MNRAS, 333, 383 [Google Scholar]
  11. Bertin, E., & Arnouts, S. 1996, A&AS, 117, 393 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  12. Bialopetravičius, J., & Narbutis, D. 2020a, A&A, 633, A148 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  13. Bialopetravičius, J., & Narbutis, D. 2020b, AJ, 160, 264 [CrossRef] [Google Scholar]
  14. Bialopetravičius, J., Narbutis, D., & Vansevičius, V. 2019, A&A, 621, A103 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  15. Blakeslee, J. P., Jordán, A., Mei, S., et al. 2009, ApJ, 694, 556 [Google Scholar]
  16. Boser, B. E., Guyon, I. M., & Vapnik, V. N. 1992, Proceedings of the Fifth Annual Workshop on Computational Learning Theory, 144 [CrossRef] [Google Scholar]
  17. Bradley, L., Sipőcz, B., Robitaille, T., et al. 2020, https://doi.org/10.5281/zenodo.4044744 [Google Scholar]
  18. Breiman, L. 2001, Mach. Learn., 45, 5 [Google Scholar]
  19. Breiman, L., Friedman, J., Olshen, R., & Stone, C. 1984, Classification and Regression Trees (Monterey: Wadsworth and Brooks) [Google Scholar]
  20. Brendel, W., & Bethge, M. 2019, Seventh International Conference on Learning Representations (ICLR 2019) [Google Scholar]
  21. Brodie, J. P., & Strader, J. 2006, ARA&A, 44, 193 [Google Scholar]
  22. Cantiello, M., D’Abrusco, R., Spavone, M., et al. 2018, A&A, 611, A93 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  23. Cantiello, M., Venhola, A., Grado, A., et al. 2020, A&A, 639, A136 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  24. Ćiprijanović, A., Kafkes, D., Perdue, G. N., et al. 2021, ArXiv e-prints [arXiv:2111.00961] [Google Scholar]
  25. Côté, P., Marzke, R. O., & West, M. J. 1998, ApJ, 501, 554 [Google Scholar]
  26. Côté, P., Blakeslee, J. P., Ferrarese, L., et al. 2004, ApJS, 153, 223 [Google Scholar]
  27. D’Abrusco, R., Cantiello, M., Paolillo, M., et al. 2016, ApJ, 819, L31 [CrossRef] [Google Scholar]
  28. da Costa-Luis, C., Larroque, S. K., Altendorf, K., et al. 2021, https://doi.org/10.5281/zenodo.5517697 [Google Scholar]
  29. De Bórtoli, B. J., Caso, J. P., Ennis, A. I., & Bassino, L. P. 2022, MNRAS, 510, 5725 [CrossRef] [Google Scholar]
  30. Deger, S., Lee, J. C., Whitmore, B. C., et al. 2022, MNRAS, 510, 32 [Google Scholar]
  31. Fahrion, K., Lyubenova, M., Hilker, M., et al. 2020a, A&A, 637, A27 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  32. Fahrion, K., Lyubenova, M., Hilker, M., et al. 2020b, A&A, 637, A26 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  33. Fahrion, K., Lyubenova, M., van de Ven, G., et al. 2021, A&A, 650, A137 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  34. Forbes, D. A., & Forte, J. C. 2001, MNRAS, 322, 257 [NASA ADS] [CrossRef] [Google Scholar]
  35. Forbes, D. A., & Remus, R.-S. 2018, MNRAS, 479, 4760 [Google Scholar]
  36. Forbes, D. A., Bastian, N., Gieles, M., et al. 2018a, Proc. R. Soc. London Ser. A, 474, 20170616 [Google Scholar]
  37. Forbes, D. A., Read, J. I., Gieles, M., & Collins, M. L. M. 2018b, MNRAS, 481, 5592 [NASA ADS] [CrossRef] [Google Scholar]
  38. Fremling, C., Hall, X. J., Coughlin, M. W., et al. 2021, ApJ, 917, L2 [NASA ADS] [CrossRef] [Google Scholar]
  39. Fukushima, K., & Miyake, S. 1982, Competition and Cooperation in Neural Nets (Springer), 267 [CrossRef] [Google Scholar]
  40. Gal, Y., & Ghahramani, Z. 2016, International Conference on Machine Learning (PMLR), 1050 [Google Scholar]
  41. Geisler, D., Lee, M. G., & Kim, E. 1996, AJ, 111, 1529 [NASA ADS] [CrossRef] [Google Scholar]
  42. Harris, W. E., Blakeslee, J. P., & Harris, G. L. H. 2017a, ApJ, 836, 67 [Google Scholar]
  43. Harris, W. E., Ciccone, S. M., Eadie, G. M., et al. 2017b, ApJ, 835, 101 [NASA ADS] [CrossRef] [Google Scholar]
  44. Harris, C. R., Millman, K. J., van der Walt, S. J., et al. 2020, Nature, 585, 357 [NASA ADS] [CrossRef] [Google Scholar]
  45. Hudson, M. J., & Robison, B. 2018, MNRAS, 477, 3869 [NASA ADS] [CrossRef] [Google Scholar]
  46. Hunter, J. D. 2007, Comput. Sci. Eng., 9, 90 [NASA ADS] [CrossRef] [Google Scholar]
  47. IEEE 2019, IEEE Standard for Floating-Point Arithmetic (Revision of IEEE 754-2008), 1 [Google Scholar]
  48. Jordán, A., Blakeslee, J. P., Peng, E. W., et al. 2004, ApJS, 154, 509 [CrossRef] [Google Scholar]
  49. Jordán, A., McLaughlin, D. E., Côté, P., et al. 2007a, ApJS, 171, 101 [CrossRef] [Google Scholar]
  50. Jordán, A., Blakeslee, J. P., Côté, P., et al. 2007b, ApJS, 169, 213 [Google Scholar]
  51. Jordán, A., Peng, E. W., Blakeslee, J. P., et al. 2009, ApJS, 180, 54 [Google Scholar]
  52. Jordán, A., Peng, E. W., Blakeslee, J. P., et al. 2015, ApJS, 221, 13 [Google Scholar]
  53. King, I. R. 1966, AJ, 71, 64 [Google Scholar]
  54. Laureijs, R., Amiaux, J., Arduini, S., et al. 2011, ArXiv e-prints [arXiv:1110.3193] [Google Scholar]
  55. LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. 1998, Proc. IEEE, 86, 2278 [Google Scholar]
  56. LeCun, Y., Bengio, Y., & Hinton, G. 2015, Nature, 521, 436 [Google Scholar]
  57. Lee-Waddell, K., Serra, P., Koribalski, B., et al. 2018, MNRAS, 474, 1108 [Google Scholar]
  58. Li, Y., Ni, Y., Croft, R. A. C., et al. 2021, Proc. Natl. Acad. Sci., 118, 2022038118 [CrossRef] [Google Scholar]
  59. Linardatos, P., Papastefanopoulos, V., & Kotsiantis, S. 2021, Entropy, 23, 18 [Google Scholar]
  60. Linnainmaa, S. 1970, Master’s Thesis (in Finnish), Univ. Helsinki [Google Scholar]
  61. Lomelí-Núñez, L., Mayya, Y. D., Rodríguez-Merino, L. H., Ovando, P. A., & Rosa-González, D. 2022, MNRAS, 509, 180 [Google Scholar]
  62. McKinney, W. 2010, in Proceedings of the 9th Python in Science Conference, eds. S. van der Walt, & J. Millman, 56 [Google Scholar]
  63. Mei, S., Blakeslee, J. P., Côté, P., et al. 2007, ApJ, 655, 144 [Google Scholar]
  64. Mohammadi, M., Mutatiina, J., Saifollahi, T., & Bunte, K. 2022, Astron. Comput., 39, 100555 [NASA ADS] [CrossRef] [Google Scholar]
  65. Montavon, G., Lapuschkin, S., Binder, A., Samek, W., & Müller, K.-R. 2017, Pattern Recognit., 65, 211 [NASA ADS] [CrossRef] [Google Scholar]
  66. Mora, M. D., Chanamé, J., & Puzia, T. H. 2015, AJ, 150, 93 [NASA ADS] [CrossRef] [Google Scholar]
  67. Müller, O., & Schnider, E. 2021, Open J. Astrophys., 4, 3 [Google Scholar]
  68. Nair, V., & Hinton, G. E. 2010, Proceedings of the 27th International Conference on Machine Learning, 807 [Google Scholar]
  69. Papernot, N., & McDaniel, P. 2018, ArXiv e-prints [arXiv:1803.04765] [Google Scholar]
  70. Paszke, A., Gross, S., Massa, F., et al. 2019, in Advances in Neural Information Processing Systems 32, eds. H. Wallach, H. Larochelle, A. Beygelzimer, et al. (Curran Associates, Inc.), 8024 [Google Scholar]
  71. Pedregosa, F., Varoquaux, G., Gramfort, A., et al. 2011, J. Mach. Learn. Res., 12, 2825 [Google Scholar]
  72. Pérez, G., Messa, M., Calzetti, D., et al. 2021, ApJ, 907, 100 [CrossRef] [Google Scholar]
  73. Pinna, F., Falcón-Barroso, J., Martig, M., et al. 2019, A&A, 623, A19 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  74. Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V., & Gulin, A. 2018, in Advances in Neural Information Processing Systems, eds. S. Bengio, H. Wallach, H. Larochelle, et al. (Curran Associates, Inc.), 31 [Google Scholar]
  75. Reback, J., McKinney, W., Van den Bossche, J., et al. 2020, https://doi.org/10.5281/zenodo.3715232 [Google Scholar]
  76. Reina-Campos, M., Trujillo-Gomez, S., Deason, A. J., et al. 2021, MNRAS, 513, 3925 [Google Scholar]
  77. Ribeiro, M. T., Singh, S., & Guestrin, C. 2016, Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 1135 [CrossRef] [Google Scholar]
  78. Richtler, T. 2003, in The Globular Cluster Luminosity Function: New Progress in Understanding an Old Distance Indicator, eds. D. Alloin, & W. Gieren, 635, 281 [NASA ADS] [Google Scholar]
  79. Rumelhart, D. E., Hinton, G. E., & Williams, R. J. 1986, Nature, 323, 533 [Google Scholar]
  80. Saifollahi, T., Janz, J., Peletier, R. F., et al. 2021, MNRAS, 504, 3580 [NASA ADS] [CrossRef] [Google Scholar]
  81. Schlegel, D. J., Finkbeiner, D. P., & Davis, M. 1998, ApJ, 500, 525 [Google Scholar]
  82. Spergel, D., Gehrels, N., Baltay, C., et al. 2015, ArXiv e-prints [arXiv:1503.03757] [Google Scholar]
  83. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. 2014, J. Mach. Learn. Res., 15, 1929 [Google Scholar]
  84. Sundararajan, M., Taly, A., & Yan, Q. 2017, International Conference on Machine Learning (PMLR), 3319 [Google Scholar]
  85. Tarsitano, F., Bruderer, C., Schawinski, K., & Hartley, W. G. 2022, MNRAS, 511, 3330 [NASA ADS] [CrossRef] [Google Scholar]
  86. Thilker, D. A., Whitmore, B. C., Lee, J. C., et al. 2022, MNRAS, 509, 4094 [Google Scholar]
  87. Valenzuela, L. M., Moster, B. P., Remus, R.-S., O’Leary, J. A., & Burkert, A. 2021, MNRAS, 505, 5815 [NASA ADS] [CrossRef] [Google Scholar]
  88. Villaescusa-Navarro, F., Anglés-Alcázar, D., Genel, S., et al. 2021, ApJ, 915, 71 [NASA ADS] [CrossRef] [Google Scholar]
  89. Villanueva-Domingo, P., Villaescusa-Navarro, F., Anglés-Alcázar, D., et al. 2021, ArXiv e-prints [arXiv:2111.08683] [Google Scholar]
  90. Visani, G., Bagli, E., Chesani, F., Poluzzi, A., & Capuzzo, D. 2020, Journal of the Operational Research Society (Taylor& Francis), 1 [Google Scholar]
  91. von Marttens, R., Casarini, L., Napolitano, N. R., et al. 2021, MNRAS, submitted [arXiv:2111.01185] [Google Scholar]
  92. Wang, S., Chen, B., Ma, J., et al. 2021, A&A, 658, A51 [Google Scholar]
  93. Wei, W., Huerta, E. A., Whitmore, B. C., et al. 2020, MNRAS, 493, 3178 [NASA ADS] [CrossRef] [Google Scholar]
  94. Werbos, P. J. 1982, System Modeling and Optimization (Springer), 762 [CrossRef] [Google Scholar]
  95. Whitmore, B. C., Chandar, R., Kim, H., et al. 2011, ApJ, 729, 78 [NASA ADS] [CrossRef] [Google Scholar]
  96. Whitmore, B. C., Lee, J. C., Chandar, R., et al. 2021, MNRAS, 506, 5294 [NASA ADS] [CrossRef] [Google Scholar]
  97. Zhou, J., Gandomi, A. H., Chen, F., & Holzinger, A. 2021, Electronics, 10, 593 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.