Free Access
Issue
A&A
Volume 663, July 2022
Article Number A112
Number of page(s) 10
Section Numerical methods and codes
DOI https://doi.org/10.1051/0004-6361/202142930
Published online 21 July 2022
  1. Benedict, G. F., Henry, T. J., Franz, O. G., et al. 2016, AJ, 152 141 [Google Scholar]
  2. Bishop, C. M. 2006, Pattern Recognition and Machine Learning, Information Science and Statistics (Berlin, Heidelberg: Springer-Verlag) [Google Scholar]
  3. Boser, B. E., Guyon, I. M., & Vapnik, V. N. 1992, in Proceedings of the Fifth Annual Workshop on Computational Learning Theory, COLT ‘92 (New York, NY, USA: Association for Computing Machinery), 144 [CrossRef] [Google Scholar]
  4. Breiman, L. 2001, Mach. Learn., 45 5 [Google Scholar]
  5. Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. 1984, Classification and Regression Trees (Monterey, CA: Wadsworth and Brooks) [Google Scholar]
  6. Chang, C.-C., & Lin, C.-J. 2011, ACM Trans. Intell. Syst. Technol., 2 27 [CrossRef] [Google Scholar]
  7. Drucker, H., Burges, C. J. C., Kaufman, L., Smola, A., & Vapnik, V. 1996, in Proceedings of the 9th International Conference on Neural Information Processing Systems, NIPS’96 (Cambridge, MA, USA: MIT Press), 155 [Google Scholar]
  8. Eddington, A. S. 1926, The Internal Constitution of the Stars / by A.S. Eddington (Cambridge: University Press Cambridge), 8 407 [Google Scholar]
  9. Eker, Z., Soydugan, F., Soydugan, E., et al. 2015, AJ, 149 131 [Google Scholar]
  10. Eker, Z., Bakış, V., Bilir, S., et al. 2018, MNRAS, 479 5491 [NASA ADS] [CrossRef] [Google Scholar]
  11. Eker, Z., Soydugan, F., Bilir, S., & Bakış, V. 2021, MNRAS, 507 3583 [NASA ADS] [CrossRef] [Google Scholar]
  12. Fernandes, J., Gafeira, R., & Andersen, J. 2021, A&A, 647, A90 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  13. Gafeira, R., Patacas, C., & Fernandes, J. 2012, Ap&SS, 341 405 [Google Scholar]
  14. Goodfellow, I., Bengio, Y., & Courville, A. 2016, Deep Learning (Cambridge: MIT Press) [Google Scholar]
  15. Hastie, T., Tibshirani, R., & Friedman, J. 2009, The Elements of Statistical Learning (Berlin: Springer-Verlag) [Google Scholar]
  16. Hertzsprung, E. 1923, Bull. Astron. Inst. Netherlands, 2 15 [NASA ADS] [Google Scholar]
  17. LeCun, Y., Bottou, L., Orr, G., & Müller, K.-R. 2012, Efficient BackProp (Berlin, Heidelberg: Springer), 9 [Google Scholar]
  18. Mann, A. W., Dupuy, T., Kraus, A. L., et al. 2019, ApJ, 871 63 [Google Scholar]
  19. Moya, A., Zuccarino, F., Chaplin, W. J., & Davies, G. R. 2018, ApJS, 237 21 [Google Scholar]
  20. Pedregosa, F., Varoquaux, G., Gramfort, A., et al. 2011, J. Mach. Learn. Res., 12 2825 [Google Scholar]
  21. Robbins, H., & Monro, S. 1951, Annal. Math. Stat., 22 400 [CrossRef] [Google Scholar]
  22. Russell, H. N., Adams, W. S., & Joy, A. H. 1923, PASP, 35 189 [NASA ADS] [CrossRef] [Google Scholar]
  23. Serenelli, A., Weiss, A., Aerts, C., et al. 2021, A&ARv, 29 4 [Google Scholar]
  24. Tipping, M. E. 2001, J. Mach. Learn. Res., 1 211 [Google Scholar]
  25. Torres, G., Andersen, J., & Giménez, A. 2010, A&ARv, 18 67 [Google Scholar]
  26. Wolpert, D. H. 1992, Neural Netw., 5 241 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.