Open Access
Issue
A&A
Volume 650, June 2021
Article Number A85
Number of page(s) 13
Section Interstellar and circumstellar matter
DOI https://doi.org/10.1051/0004-6361/202140780
Published online 10 June 2021
  1. Abplanalp, M. J., & Kaiser, R. I. 2020, ApJ, 889, 3 [Google Scholar]
  2. Abplanalpa, M. J., Gozemc, S., Krylovc, A. I., et al. 2016, PNAS, 113, 7727 [Google Scholar]
  3. Allain, T., Leach, S., & Sedlmayr, E. 1996, A&A, 305, 616 [NASA ADS] [Google Scholar]
  4. Allamandola, L. J., Sandford, S. A., & Valero, G. J. 1988, Icarus, 76, 225 [Google Scholar]
  5. Altwegg, K., Balsiger, H., Berthelier, J. J., et al. 2017, MNRAS, 469, S130 [Google Scholar]
  6. Altwegg, K., Balsiger, H., & Fuselier, S. A. 2019, ARA&A, 57, 113 [Google Scholar]
  7. Apeloig, Y. 1990, The Chemistry of Enols, ed. Z. Rappoport (Wiley, Chichester: John Wiley & Sons) [Google Scholar]
  8. Arumainayagam, C. R., Garrod, R. T., Boyer, M. C., et al. 2019, Chem. Soc. Rev., 48, 2293 [Google Scholar]
  9. Bacmann, A., Taquet, V., Faure, A., Kahane, C., & Ceccarelli, C. 2012, A&A, 541, L12 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  10. Bacmann, A., Faure, A., & Berteaud, J. 2019, ACS Earth Space Chem., 3, 1000 [Google Scholar]
  11. Balucani, N., Ceccarelli, C., & Taquet, V. 2015, MNRAS, 449, L16 [Google Scholar]
  12. Baratta, G. A., & Palumbo, M. E. 1998, J. Opt. Soc. Am. A, 15, 3076 [Google Scholar]
  13. Baratta, G., Chaput, D., Cottin, H., et al. 2015, Planet. Space Sci., 118, 211 [Google Scholar]
  14. Barnes, A., & Hallam, H. 1970, Trans. Faraday Soc., 66, 1932 [Google Scholar]
  15. Basiuk, V. A., & Kobayashi, K. 2004, Int. J. Quant. Chem., 97, 713 [Google Scholar]
  16. Bennett, C. J., Jamieson, C. S., Osamura, Y., & Kaiser, R. I. 2005a, ApJ, 624, 1097 [Google Scholar]
  17. Bennett, C. J., Osamura, Y., Lebar, M. D., & Kaiser, R. I. 2005b, ApJ, 634, 698 [Google Scholar]
  18. Bennett, C. J., Jamieson, C. S., Osamura, Y., & Kaiser, R. I. 2006, ApJ, 653, 792 [Google Scholar]
  19. Berg, O., & Ewing, G. E. 1991, J. Phys. Chem., 95, 2908 [Google Scholar]
  20. Bergner, J. B., Öberg, K. I., & Rajappan, M. 2019, ApJ, 874, 115 [Google Scholar]
  21. Bianchi, E., Codella, C., Ceccarelli, C., et al. 2018, MNRAS, 483, 1850 [Google Scholar]
  22. Bisschop, S. E., Jørgensen, J. K., van Dishoeck, E. F., & de Wachter, E. B. M. 2007, A&A, 465, 913 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  23. Bisschop, S. E., Jørgensen, J. K., Bourke, T. L., Bottinelli, S., & van Dishoeck, E. F. 2008, A&A, 488, 959 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  24. Biver, N., & Bockelée-Morvan, D. 2019, ACS Earth Space Chem., 3, 1550 [Google Scholar]
  25. Biver, N., Bockelée-Morvan, D., Debout, V., et al. 2014, A&A, 566, L5 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  26. Boogert, A. C. A., Gerakines, P. A., & Whittet, D. C. B. 2015, ARA&A, 53, 541 [Google Scholar]
  27. Boudin, N., Schutte, W. A., Greenberg, J. M., et al. 1998, A&A, 331, 749 [Google Scholar]
  28. Brooke, T., Tokunaga, A., Weaver, H., et al. 1996, Nature, 383, 606 [Google Scholar]
  29. Buxton, G. V. 2008, Radiation chemistry: from basics to applications in material and life sciences EDP Sciences [Google Scholar]
  30. Carr, J. S., & Najita, J. R. 2008, Science, 319, 1504 [Google Scholar]
  31. Cernicharo, J., Yamamura, I., González-Alfonso, E., et al. 1999, ApJ, 526, L41 [Google Scholar]
  32. Cernicharo, J., Marcelino, N., Roueff, E., et al. 2012, ApJ, 759, L43 [Google Scholar]
  33. Charnley, S. 2004, Adv. Space Res., 33, 23 [Google Scholar]
  34. Chevance, M., Kruijssen, J. D., Vazquez-Semadeni, E., et al. 2020, Space Sci. Rev., 216 [Google Scholar]
  35. Chuang, K.-J., Fedoseev, G., Qasim, D., et al. 2018, ApJ, 853, 102 [Google Scholar]
  36. Chuang, K.-J., Fedoseev, G., Qasim, D., et al. 2020, A&A, 635, A199 [EDP Sciences] [Google Scholar]
  37. Cleary, P. A., Romero, M. T. B., Blitz, M. A., et al. 2006, Phys. Chem. Chem. Phys., 8, 5633 [Google Scholar]
  38. Compagnini, G., D’Urso, L., Puglisi, O., Baratta, G., & Strazzulla, G. 2009, Carbon, 47, 1605 [Google Scholar]
  39. Coutens, A., Persson, M. V., Jørgensen, J. K., Wampfler, S. F., & Lykke, J. M. 2015, A&A, 576, A5 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  40. Cuppen, H., & Herbst, E. 2007, ApJ, 668, 294 [Google Scholar]
  41. da Silva, G. 2010, Angew. Chem. Int. Ed., 49, 7523 [Google Scholar]
  42. DeMore, W. 1969, Int. J. Chem. Kinet., 1, 209 [Google Scholar]
  43. Enrique-Romero, J., Rimola, A., Ceccarelli, C., & Balucani, N. 2016, MNRAS, 459, L6 [Google Scholar]
  44. Enrique-Romero, J., Álvarez-Barcia, S., Kolb, F., et al. 2020, MNRAS, 493, 2523 [Google Scholar]
  45. Fuente, A., Cernicharo, J., Caselli, P., et al. 2014, A&A, 568, A65 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  46. Garozzo, M., La Rosa, L., Kanuchova, Z., et al. 2011, A&A, 528, A118 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  47. Gerakines, P. A., Schutte, W. A., Greenberg, J. M., & van Dishoeck, E. F. 1995, A&A, 296, 810 [NASA ADS] [Google Scholar]
  48. Gomis, O., Leto, G., & Strazzulla, G. 2004, A&A, 420, 405 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  49. Hawkins, M., & Andrews, L. 1983, J. Am. Chem. Soc., 105, 2523 [Google Scholar]
  50. Herbst, E. 2017, Int. Rev. Phys. Chem., 36, 287 [Google Scholar]
  51. Herbst, E., & van Dishoeck, E. F. 2009, ARA&A, 47, 427 [Google Scholar]
  52. Hidaka, H., Kouchi, A., & Watanabe, N. 2007, J. Chem. Phys., 126, 204707 [Google Scholar]
  53. Hiraoka, K., Yamamoto, K., Kihara, Y., Takayama, T., & Sato, T. 1999, ApJ, 514, 524 [Google Scholar]
  54. Hiraoka, K., Takayama, T., Euchi, A., Hand a, H., & Sato, T. 2000, ApJ, 532, 1029 [Google Scholar]
  55. Hollenstein, H., & Günthard, H. H. 1971, Spectroch. Acta A: Mol. Spectrosc., 27, 2027 [Google Scholar]
  56. Hudson, R. L., & Ferrante, R. F. 2020, MNRAS, 492, 283 [Google Scholar]
  57. Hudson, R. L., & Loeffler, M. J. 2013, ApJ, 773, 109 [Google Scholar]
  58. Hudson, R., & Moore, M. 1997, Icarus, 126, 233 [Google Scholar]
  59. Hudson, J. E., Hamilton, M. L., Vallance, C., & Harland, P. W. 2003, Phys. Chem. Chem. Phys., 5, 3162 [Google Scholar]
  60. Hudson, R., Ferrante, R., & Moore, M. 2014, Icarus, 228, 276 [Google Scholar]
  61. Ikeda, M., Ohishi, M., Nummelin, A., et al. 2001, ApJ, 560, 792 [Google Scholar]
  62. Ioppolo, S., van Boheemen, Y., Cuppen, H. M., van Dishoeck, E. F., & Linnartz, H. 2011, MNRAS, 413, 2281 [Google Scholar]
  63. Jäger, C., Mutschke, H., Henning, T., & Huisken, F. 2011, EAS Publ. Ser., 46, 293 [Google Scholar]
  64. Jochims, H., Ruhl, E., Baumgartel, H., Tobita, S., & Leach, S. 1994, ApJ, 420, 307 [Google Scholar]
  65. Jørgensen, J. K., Favre, C., Bisschop, S. E., et al. 2012, ApJ, 757, L4 [Google Scholar]
  66. Jørgensen, J. K., van der Wiel, M. H. D., Coutens, A., et al. 2016, A&A, 595, A117 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  67. Jørgensen, J., Müller, H., Calcutt, H., et al. 2018, A&A, 620, A170 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  68. Jørgensen, J. K., Belloche, A., & Garrod, R. T. 2020, ARA&A, 58, 727 [Google Scholar]
  69. Kaiser, R. I. 2002, Chem. Rev., 102, 1309 [Google Scholar]
  70. Kaiser, R. I., Maity, S., & Jones, B. M. 2014, Phys. Chem. Chem. Phys., 16, 3399 [Google Scholar]
  71. Keady, J. J., & Hinkle, K. H. 1988, ApJ, 331, 539 [Google Scholar]
  72. Khanna, R., Ospina, M. J., & Zhao, G. 1988, Icarus, 73, 527 [Google Scholar]
  73. Kim, Y., & Kaiser, R. 2009, ApJ, 181, 543 [Google Scholar]
  74. Klopman, G., & Andreozzi, P. 1979, Bull. Soc. Chim. Belg., 88, 875 [Google Scholar]
  75. Knez, C., Moore, M., Travis, S., et al. 2008, Proc. Int. Astron. Union, 4, 47 [Google Scholar]
  76. Knez, C., Moore, M., Ferrante, R., & Hudson, R. 2012, ApJ, 748, 95 [Google Scholar]
  77. Kobayashi, H., Hidaka, H., Lamberts, T., et al. 2017, ApJ, 837, 155 [Google Scholar]
  78. Koga, Y., Nakanaga, T., Sugawara, K.-i., et al. 1991, J. Mol. Spectrosc., 145, 315 [Google Scholar]
  79. Lacy, J., Evans, N. J., Achtermann, J., et al. 1989, ApJ, 342, L43 [Google Scholar]
  80. Lahuis, F. & van Dishoeck, E. 2000, A&A, 355, 699 [Google Scholar]
  81. Lamberts, T., Markmeyer, M. N., Kolb, F. J., & Kästner, J. 2019, ACS Earth Space Chem., 3, 958 [Google Scholar]
  82. Lee, C.-F., Codella, C., Li, Z.-Y., & Liu, S.-Y. 2019, ApJ, 876, 63 [Google Scholar]
  83. Lefloch, B., Ceccarelli, C., Codella, C., et al. 2017, MNRAS, 469, L73 [Google Scholar]
  84. Le Page, V., Snow, T. P., & Bierbaum, V. M. 2003, ApJ, 584, 316 [Google Scholar]
  85. Linnartz, H., Ioppolo, S., & Fedoseev, G. 2015, Int. Rev. Phys. Chem., 34, 205 [Google Scholar]
  86. Lo, J.-I., Peng, Y.-C., Chou, S.-L., Lu, H.-C., & Cheng, B.-M. 2020, MNRAS, 499, 543 [Google Scholar]
  87. Loeffler, M., Raut, U., Vidal, R. A., Baragiola, R., & Carlson, R. 2006, Icarus, 180, 265 [Google Scholar]
  88. Lykke, J. M., Coutens, A., Jørgensen, J. K., et al. 2017, A&A, 597, A53 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  89. Maity, S., Kaiser, R. I., & Jones, B. M. 2014, ApJ, 789, 36 [Google Scholar]
  90. Manigand, S., Jørgensen, J., Calcutt, H., et al. 2020, A&A, 635, A48 [CrossRef] [EDP Sciences] [Google Scholar]
  91. McKee, K. W., Blitz, M. A., Cleary, P. A., et al. 2007, J. Phys. Chem. A, 111, 4043 [Google Scholar]
  92. Melosso, M., McGuire, B. A., Tamassia, F., Degli Esposti, C., & Dore, L. 2019, ACS Earth Space Chem., 3, 1189 [Google Scholar]
  93. Mennella, V., Baratta, G. A., Esposito, A., Ferini, G., & Pendleton, Y. J. 2003, ApJ, 587, 727 [Google Scholar]
  94. Michael, J., Nava, D., Payne, W., & Stief, L. 1979, J. Chem. Phys., 70, 5222 [Google Scholar]
  95. Mikawa, Y., Brasch, J., & Jakobsen, R. 1971, Spectrochim. Acta A: Mol. Spectrosc., 27, 529 [Google Scholar]
  96. Miller, J. A., & Klippenstein, S. J. 2004, Phys. Chem. Chem. Phys., 6, 1192 [Google Scholar]
  97. Miller, J. A., & Melius, C. F. 1989 in, Elsevier, 1031–1039 [Google Scholar]
  98. Milligan, D. E., & Jacox, M. E. 1971, J. Chem. Phys., 54, 927 [Google Scholar]
  99. Moore, M., & Hudson, R. 1998, Icarus, 135, 518 [Google Scholar]
  100. Moore, M., & Hudson, R. 2000, Icarus, 145, 282 [Google Scholar]
  101. Mulas, G., Baratta, G., Palumbo, M., & Strazzulla, G. 1998, A&A, 333, 1025 [Google Scholar]
  102. Mumma, M., DiSanti, M., Russo, N. D., et al. 2003, Adv. Space Res., 31, 2563 [Google Scholar]
  103. Necula, A., & Scott, L. T. 2000, J. Am. Chem. Soc., 122, 1548 [Google Scholar]
  104. Öberg, K. I., Bottinelli, S., Jørgensen, J. K., & van Dishoeck, E. F. 2010, ApJ, 716, 825 [Google Scholar]
  105. Palumbo, M. 2006, A&A, 453, 903 [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  106. Pereira, R., de Barros, A., da Costa, C., et al. 2020, MNRAS, 495, 40 [Google Scholar]
  107. Qasim, D., Chuang, K.-J., Fedoseev, G., et al. 2018, A&A, 612, A83 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  108. Rivilla, V. M., Beltrán, M. T., Cesaroni, R., et al. 2017, A&A, 598, A59 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  109. Rodler, M., Blom, C., & Bauder, A. 1984, J. Am. Chem. Soc., 106, 4029 [Google Scholar]
  110. Ryazantsev, S. V., Feldman, V. I., & Khriachtchev, L. 2017, J. Am. Chem. Soc., 139, 9551 [Google Scholar]
  111. Senosiain, J. P., Klippenstein, S. J., & Miller, J. A. 2005, J. Phys. Chem. A, 109, 6045 [Google Scholar]
  112. Shimanouchi, T. 1972, Stand. Ref. Data Ser., 1 [Google Scholar]
  113. Sicilia, D., Ioppolo, S., Vindigni, T., Baratta, G., & Palumbo, M. E. 2012, A&A, 543, A155 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  114. Smith, G. P., Fairchild, P. W., & Crosley, D. R. 1984, J. Chem. Phys., 81, 2667 [Google Scholar]
  115. Sonnentrucker, P., González-Alfonso, E., & Neufeld, D. 2007, ApJ, 671, L37 [Google Scholar]
  116. Strazzulla, G., Baratta, G., & Palumbo, M. 2001, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 57, 825 [Google Scholar]
  117. Taquet, V., López-Sepulcre, A., Ceccarelli, C., et al. 2015, ApJ, 804, 81 [Google Scholar]
  118. Taquet, V., Wirström, E. S., & Charnley, S. B. 2016, ApJ, 821, 46 [Google Scholar]
  119. Taquet, V., Wirström, E., Charnley, S. B., et al. 2017, A&A, 607, A20 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  120. Terwischa van Scheltinga, J., Ligterink, N., Boogert, A., van Dishoeck, E., & Linnartz, H. 2018, A&A, 611, A35 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  121. Tielens, A. G. G. M. 1992, in Tokyo: Univ. Tokyo Press, Vol. 251, Chemistry and Spectroscopy of Interstellar Molecules, ed. N. Kaifu [Google Scholar]
  122. Tielens, A. 2013, Rev. Mod. Phys., 85, 1021 [Google Scholar]
  123. Tørneng, E., Nielsen, C., Klaeboe, P., Hopf, H., & Priebe, H. 1980, Spectrochim. Acta A: Mol. Spectrosc., 36, 975 [Google Scholar]
  124. Turner, B. E., & Apponi, A. J. 2001, ApJ, 561, L207 [Google Scholar]
  125. Turner, B., Terzieva, R., & Herbst, E. 1999, ApJ, 518, 699 [Google Scholar]
  126. Urso, R., Scirè, C., Baratta, G., Compagnini, G., & Palumbo, M. E. 2016, A&A, 594, A80 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  127. van Gelder, M., Tabone, B., van Dishoeck, E., et al. 2020, A&A, 639, A87 [CrossRef] [EDP Sciences] [Google Scholar]
  128. Ward, M. D., & Price, S. D. 2011, ApJ, 741, 121 [Google Scholar]
  129. Watanabe, N.,& Kouchi, A. 2008, Progr. Surf. Sci., 83, 439 [Google Scholar]
  130. West, B., Castillo, S. R., Sit, A., et al. 2018, Phys. Chem. Chem. Phys., 20, 7195 [Google Scholar]
  131. Wu, C. R., Judge, D., Cheng, B.-M., et al. 2002, Icarus, 156, 456 [Google Scholar]
  132. Zasimov, P. V., Ryazantsev, S. V., Tyurin, D. A., & Feldman, V. I. 2020, MNRAS, 491, 5140 [Google Scholar]
  133. Zellner, R., & Lorenz, K. 1984, J. Phys. Chem., 88, 984 [Google Scholar]
  134. Zhen, J., Castellanos, P., Paardekooper, D. M., Linnartz, H., & Tielens, A. G. 2014, ApJ, 797, L30 [Google Scholar]
  135. Zhou, L., Kaiser, R. I., & Tokunaga, A. T. 2009, Planet. Space Sci., 57, 830 [Google Scholar]
  136. Ziegler, J. F., Biersack, J. P., & Ziegler, M. D. 2011, SRIM: http://www.srim.org [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.