Issue |
A&A
Volume 568, August 2014
|
|
---|---|---|
Article Number | A65 | |
Number of page(s) | 28 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/201323074 | |
Published online | 15 August 2014 |
The hot core towards the intermediate-mass protostar NGC 7129 FIRS 2
Chemical similarities with Orion KL ⋆,⋆⋆,⋆⋆⋆
1
Observatorio Astronómico Nacional (OAN IGN), ,
Apdo 112,
28803
Alcalá de Henares,
Spain
email:
a.fuente@oan.es
2
Instituto de Ciencia de Materiales de Madrid (ICMM) C/ Sor Juana
Inés de la Cruz 3, Cantoblanco, 28049
Madrid,
Spain
3
Max Planck Institute for Extraterrestrial Physics,
Postfach 1312,
85741
Garching,
Germany
4
Department of Physics and Astronomy, University of
Waterloo, Waterloo,
Ontario, N2L 3G1, Canada
5
Department of Physics & Astronomy, University of
Victoria, Victoria,
BC, V8P 1A1, Canada
6
National Research Council of Canada, Herzberg Institute of
Astrophysics, 5071 West Saanich
Road, Victoria,
BC, V9E 2E7, Canada
7
Joint Astronomy Centre, 660 North A’ohoku Place, University Park,
Hilo, HI
96720,
USA
8
Leiden Observatory, Leiden University,
PO Box 9513,
2300 RA
Leiden, The
Netherlands
9
Centro de Radioastronomía y Astrofísica, Universidad Nacional
Autónoma de Mexico, PO Box
3-72, 58090
Morelia, Michoacán, Mexico
10
Jet Propulsion Laboratory, California Institute of Technology,
4800 Oak Grove
Drive, Pasadena,
CA
91109,
USA
Received:
18
November
2013
Accepted:
17
May
2014
Context. This paper is dedicated to the study of the chemistry of the intermediate-mass (IM) hot core NGC 7129 FIRS 2, probably the most compact warm core found in the 2−8 M⊙ stellar mass range.
Aims. Our aim is to determine the chemical composition of the IM hot core NGC 7129 FIRS 2, and to provide new insights on the chemistry of hot cores in a more general context.
Methods. NGC 7129 FIRS 2 (hereafter, FIRS 2) is located at a distance of 1250 pc and high spatial resolution observations are required to resolve the hot core at its center. We present a molecular survey from 218 200 MHz to 221 800 MHz carried out with the IRAM Plateau de Bure Interferometer (PdBI). These observations were complemented with a long integration single-dish spectrum taken with the IRAM 30 m telescope in Pico de Veleta (Spain). We used a local thermodynamic equilibrium (LTE) single temperature code to model the whole dataset.
Results. The interferometric spectrum is crowded with a total of ≈300 lines from which a few dozen remain unidentified. The spectrum has been modeled with a total of 20 species and their isomers, isotopologues, and deuterated compounds. Complex molecules like methyl formate (CH3OCHO), ethanol (CH3CH2OH), glycolaldehyde (CH2OHCHO), acetone (CH3COCH3), dimethyl ether (CH3OCH3), ethyl cyanide (CH3CH2CN), and the aGg’ conformer of ethylene glycol (aGg’-(CH2OH)2) are among the detected species. The detection of vibrationally excited lines of CH3CN, CH3OCHO, CH3OH, OCS, HC3N, and CH3CHO proves the existence of gas and dust at high temperatures. The gas kinetic temperature estimated from the vibrational lines of CH3CN, ~405-67+100 K, is similar to that measured in massive hot cores. Our data allow an extensive comparison of the chemistry in FIRS 2 and the Orion hot core.
Conclusions. We find a quite similar chemistry in FIRS 2 and Orion. Most of the studied fractional molecular abundances agree within a factor of 5. Larger differences are only found for the deuterated compounds D2CO and CH2DOH and a few molecules (CH3CH2CN, SO2, HNCO and CH3CHO). Since the physical conditions are similar in both hot cores, only different initial conditions (warmer pre-collapse and collapse phase in the case of Orion) and/or different crossing times of the gas in the hot core can explain this behavior. We discuss these two scenarios.
Key words: astrochemistry / stars: formation / ISM: individual objects: NGC 7129 FIRS 2
Based on observations carried out with the IRAM Plateau de Bure Interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).
Appendices are available in electronic form at http://www.aanda.org
The interferometrid spectra of Fig. A.1 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/568/A65
© ESO, 2014
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.