Free Access
Issue
A&A
Volume 650, June 2021
Article Number A109
Number of page(s) 13
Section Numerical methods and codes
DOI https://doi.org/10.1051/0004-6361/202040252
Published online 15 June 2021
  1. Astropy Collaboration (Robitaille, T. P., et al.) 2013, A&A, 558, A33 [Google Scholar]
  2. Astropy Collaboration (Price-Whelan, A. M., et al.) 2018, AJ, 156, 123 [Google Scholar]
  3. Baddeley, A., Rubak, E., & Turner, R. 2015, in Spatial Point Patterns: Methodology and Applications with R, (CRC Press), Chapman& Hall/CRC Interdisciplinary Statistics [Google Scholar]
  4. Balaguer-Núñez, L., López del Fresno, M., Solano, E., et al. 2020, MNRAS, 492, 5811 [Google Scholar]
  5. Barber, C. B., Dobkin, D. P., & Huhdanpaa, H. 1996, ACM Trans. Math. Software, 22, 469 [CrossRef] [MathSciNet] [Google Scholar]
  6. Baxter, R. A. 2010, in Mixture Model, eds. C. Sammut, & G. I. Webb (Boston, MA: Springer, US), 680 [Google Scholar]
  7. Brier, G. W. 1950, Mon. Weather Rev., 78, 1 [CrossRef] [Google Scholar]
  8. Cabrera-Cano, J., & Alfaro, E. J. 1990, A&A, 235, 94 [NASA ADS] [Google Scholar]
  9. Cantat-Gaudin, T., Jordi, C., Vallenari, A., et al. 2018a, A&A, 618, A93 [Google Scholar]
  10. Cantat-Gaudin, T., Vallenari, A., Sordo, R., et al. 2018b, A&A, 615, A49 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  11. Cantat-Gaudin, T., Jordi, C., Wright, N. J., et al. 2019, A&A, 626, A17 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  12. Carrera, R., Pasquato, M., Vallenari, A., et al. 2019, A&A, 627, A119 [CrossRef] [EDP Sciences] [Google Scholar]
  13. Dempster, A. P., Laird, N. M., & Rubin, D. B. 1977, J. R. Stat. Soc.: Ser. B (Methodol.), 39, 1 [Google Scholar]
  14. Dixon, P. M. 2014, Ripley’s K Function (American Cancer Society) [Google Scholar]
  15. Gaia Collaboration (Prusti, T., et al.) 2016, A&A, 595, A1 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  16. Gaia Collaboration (Brown, A. G. A., et al.) 2018, A&A, 616, A1 [Google Scholar]
  17. Gaia Collaboration (Brown, A. G. A., et al.) 2021, A&A, 649, A1 [Google Scholar]
  18. Good, I. J. 1952, J. R. Stat. Soc.: Ser. B (Methodol.), 14, 107 [Google Scholar]
  19. Hand, D. J. 2009, Mach. Learn., 77, 103 [CrossRef] [Google Scholar]
  20. Hand, D., & Anagnostopoulos, C. 2014, Pattern Recognit. Lett., 40, 41 [CrossRef] [Google Scholar]
  21. Hernández-Orallo, J., Flach, P., & Ferri, C. 2012, J. Mach. Learn. Res., 13, 2813 [Google Scholar]
  22. Hunter, J. D., et al. 2007, Comput. Sci. Eng., 9, 90 [Google Scholar]
  23. Javakhishvili, G., Kukhianidze, V., Todua, M., & Inasaridze, R. 2006, A&A, 447, 915 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  24. Jones, B. F., & Walker, M. F. 1988, AJ, 95, 1755 [NASA ADS] [CrossRef] [Google Scholar]
  25. Jones, E., Oliphant, T., Peterson, P., et al. 2001, SciPy: Open Source Scientific Tools for Python, [Online; accessed 2016-06-21] [Google Scholar]
  26. Krone-Martins, A., & Moitinho, A. 2014, A&A, 561, A57 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  27. Lagache, T., Lang, G., Sauvonnet, N., & Olivo-Marin, J.-C. 2013, PLoS ONE, 8 [Google Scholar]
  28. Lobo, J. M., Jiménez-Valverde, A., & Real, R. 2008, Global Ecol. Biogeogr., 17, 145 [CrossRef] [Google Scholar]
  29. MacQueen, J. 1967, Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Statistics (Berkeley, Calif.: University of California Press), 281 [Google Scholar]
  30. Marcon, E., Traissac, S., & Lang, G. 2013, ISRN Ecol., 2013, 1 [CrossRef] [Google Scholar]
  31. Matthews, B. 1975, Biochimica et Biophysica Acta (BBA) - Protein Structure, 405, 442 [CrossRef] [Google Scholar]
  32. Merkle, E. C., & Steyvers, M. 2013, Decis. Anal., 10, 292 [CrossRef] [Google Scholar]
  33. Momcheva, I., & Tollerud, E. 2015, ArXiv e-prints [arXiv:1507.03989] [Google Scholar]
  34. Parker, C. 2011, 2011 IEEE 11th International Conference on Data Mining (IEEE) [Google Scholar]
  35. Pedregosa, F., Varoquaux, G., Gramfort, A., et al. 2011, J. Mach. Learn. Res., 12, 2825 [Google Scholar]
  36. Perren, G. I., Vázquez, R. A., & Piatti, A. E. 2015, A&A, 576, A6 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  37. Ripley, B. D. 1976, J. Appl. Probab., 13, 255 [CrossRef] [Google Scholar]
  38. Ripley, B. D. 1979, J. R. Stat. Soc. Ser. B (Methodol.), 41, 368 [Google Scholar]
  39. Rodriguez, A., & Laio, A. 2014, Science, 344, 1492 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  40. Sanders, W. L. 1971, A&A, 14, 226 [NASA ADS] [Google Scholar]
  41. Sculley, D. 2010, Proceedings of the 19th International Conference on World Wide Web, WWW ’10 (New York, NY, USA: Association for Computing Machinery), 1177 [CrossRef] [Google Scholar]
  42. Streib, K., & Davis, J. W. 2011, CVPR, 2011, 2305 [Google Scholar]
  43. Tollerud, E. J., Smith, A. M., Price-Whelan, A., et al. 2019, Bull. Am. Astron. Soc., 51, 180 [Google Scholar]
  44. Van Der Walt, S., Colbert, S. C., & Varoquaux, G. 2011, Comput. Sci. Eng., 13, 22 [Google Scholar]
  45. van Rossum, G. 1995, Python tutorial, Report CS-R9526 [Google Scholar]
  46. Vasilevskis, S., Klemola, A., & Preston, G. 1958, AJ, 63, 387 [NASA ADS] [CrossRef] [Google Scholar]
  47. Voronoi, G. 1908, Journal für die reine und angewandte Mathematik, 1908, 97 [CrossRef] [Google Scholar]
  48. Yontan, T., Bilir, S., Bostancı, Z. F., et al. 2019, Ap&SS, 364 [CrossRef] [Google Scholar]
  49. Zepeda-Mendoza, M. L., & Resendis-Antonio, O. 2013, in Hierarchical Agglomerative Clustering, eds. W. Dubitzky, O. Wolkenhauer, K. H. Cho, & H. Yokota (New York, NY: Springer, New York), 886 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.