Free Access
Issue |
A&A
Volume 645, January 2021
|
|
---|---|---|
Article Number | A89 | |
Number of page(s) | 22 | |
Section | Numerical methods and codes | |
DOI | https://doi.org/10.1051/0004-6361/202038500 | |
Published online | 19 January 2021 |
- Adelman-McCarthy, J. K., et al. 2009, VizieR Online Data Catalog: II/294 [Google Scholar]
- Ahn, C. P., Alexandroff, R., Allende Prieto, C., et al. 2012, ApJS, 203, 21 [NASA ADS] [CrossRef] [Google Scholar]
- Alam, S., Albareti, F. D., Allende Prieto, C., et al. 2015, ApJS, 219, 12 [NASA ADS] [CrossRef] [Google Scholar]
- Alhassan, W., Taylor, A., & Vaccari, M. 2018, MNRAS, 480, 2085 [NASA ADS] [CrossRef] [Google Scholar]
- Aniyan, A., & Thorat, K. 2017, ApJS, 230, 20 [NASA ADS] [CrossRef] [Google Scholar]
- Astropy Collaboration (Price-Whelan, A. M., et al.) 2018, AJ, 156, 123 [Google Scholar]
- Banfield, J. K., Wong, O. I., Willett, K. W., et al. 2015, MNRAS, 453, 2326 [NASA ADS] [CrossRef] [Google Scholar]
- Baron, D., & Poznanski, D. 2016, MNRAS, 465, 4530 [NASA ADS] [CrossRef] [Google Scholar]
- Becker, R. H., White, R. L., & Helfand, D. J. 1995, ApJ, 450, 559 [NASA ADS] [CrossRef] [Google Scholar]
- Best, P. 2009, Astron. Nachr.: Astron. Notes, 330, 184 [NASA ADS] [CrossRef] [Google Scholar]
- Boch, T., & Fernique, P. 2014, in Astronomical Data Analysis Software and Systems XXIII, eds. N. Manset, & P. Forshay, ASP Conf. Ser., 485, 277 [NASA ADS] [Google Scholar]
- Bonnarel, F., Fernique, P., Bienaymé, O., et al. 2000, A&A, 143, 33 [Google Scholar]
- Chambers, K. C., Magnier, E., Metcalfe, N., et al. 2016, ArXiv e-prints [arXiv:1612.05560] [Google Scholar]
- Condon, J. J., Cotton, W. D., Greisen, E. W., et al. 1998, AJ, 115, 1693 [NASA ADS] [CrossRef] [Google Scholar]
- Dai, J. M., & Tong, J. 2018, Visualizing the Hidden Features of Galaxy Morphology with Machine Learning [Google Scholar]
- Dey, A., Schlegel, D. J., Lang, D., et al. 2019, AJ, 157, 168 [NASA ADS] [CrossRef] [Google Scholar]
- Dieleman, S., Willett, K. W., & Dambre, J. 2015, MNRAS, 450, 1441 [NASA ADS] [CrossRef] [Google Scholar]
- Fanaroff, B. L., & Riley, J. M. 1974, MNRAS, 167, 31 [NASA ADS] [CrossRef] [Google Scholar]
- Galvin, T., Huynh, M., Norris, R., et al. 2019, PASP, 131, 108009 [CrossRef] [Google Scholar]
- Galvin, T., Huynh, M., Norris, R., et al. 2020, MNRAS, 497, 2730 [CrossRef] [Google Scholar]
- Goodfellow, I., Bengio, Y., & Courville, A. 2016, Deep Learning (MIT Press), http://www.deeplearningbook.org [Google Scholar]
- Green, D. A., & Riley, J. M. 1995, MNRAS, 274, 324 [NASA ADS] [Google Scholar]
- Hales, S. E. G., Riley, J. M., Waldram, E. M., Warner, P. J., & Baldwin, J. E. 2007, MNRAS, 382, 1639 [NASA ADS] [Google Scholar]
- Halevy, A., Norvig, P., & Pereira, F. 2009, IEEE Intel. Syst., 24 [Google Scholar]
- Hardcastle, M., Croston, J., Shimwell, T., et al. 2019, MNRAS, 488, 3416 [NASA ADS] [CrossRef] [Google Scholar]
- Ignesti, A., Gitti, M., Brunetti, G., Feretti, L., & Giovannini, G. 2017, A&A, 604, A21 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Ignesti, A., Gitti, M., Brunetti, G., et al. 2018, A&A, 610, A89 [CrossRef] [EDP Sciences] [Google Scholar]
- Jarrett, T., Chester, T., Cutri, R., et al. 2000, AJ, 119, 2498 [NASA ADS] [CrossRef] [Google Scholar]
- Jarvis, M., Taylor, R., Agudo, I., et al. 2016, MeerKAT Science: On the Pathway to the SKA, 6 [Google Scholar]
- Kadam, S. K., Sonkamble, S. S., Pawar, P. K., & Patil, M. K. 2019, MNRAS, 484, 4113 [CrossRef] [Google Scholar]
- Kaiser, C. R., Schoenmakers, A. P., & Rottgering, H. J. A. 2000, MNRAS, 315, 381 [NASA ADS] [CrossRef] [Google Scholar]
- Kempner, J. C., Blanton, E. L., Clarke, T. E., et al. 2004, The Riddle of Cooling Flows in Galaxies and Clusters of Galaxies [Google Scholar]
- Kohonen, T. 1989, Self-Organization and Associative Memory (Berlin Heidelberg: Springer) [CrossRef] [Google Scholar]
- Kohonen, T. 2001, Self-organizing Maps (Berlin New York: Springer) [CrossRef] [Google Scholar]
- Lacy, M., Baum, S. A., Chandler, C. J., et al. 2020, PASP, 132, 035001 [CrossRef] [Google Scholar]
- Lavaux, G., & Hudson, M. J. 2011, MNRAS, 416, 2840 [NASA ADS] [CrossRef] [Google Scholar]
- Lukic, V., Brüggen, M., Banfield, J. K., et al. 2018, MNRAS, 476, 246 [NASA ADS] [CrossRef] [Google Scholar]
- Lukic, V., Brüggen, M., Mingo, B., et al. 2019, MNRAS, 487, 1729 [Google Scholar]
- Mackay, C. D. 1971, MNRAS, 154, 209 [NASA ADS] [CrossRef] [Google Scholar]
- Mahatma, V. H., Hardcastle, M. J., Williams, W. L., et al. 2019, A&A, 622, A13 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Mandal, S., Intema, H., van Weeren, R., et al. 2020, A&A, 634, A4 [CrossRef] [EDP Sciences] [Google Scholar]
- Maslowski, J., Pauliny-Toth, I. I. K., Witzel, A., & Kuehr, H. 1984, A&A, 141, 376 [Google Scholar]
- Messier, C. 1781, Catalogue des Nébuleuses et des Amas d’Étoiles (Catalog of Nebulae and Star Clusters), Connaissance des Temps ou des Mouvements Célestes [Google Scholar]
- Miley, G. 1980, Ann. Rev. Astron. Astrophys., 18, 165 [NASA ADS] [CrossRef] [Google Scholar]
- Mingo, B., Croston, J., Hardcastle, M., et al. 2019, MNRAS, 488, 2701 [NASA ADS] [CrossRef] [Google Scholar]
- Mohan, N., & Rafferty, D. 2015, PyBDSF: Python Blob Detection and Source Finder (Astrophysics Source Code Library) [Google Scholar]
- Norris, R. P., Hopkins, A. M., Afonso, J., et al. 2011, PASA, 28, 215 [NASA ADS] [CrossRef] [Google Scholar]
- Ochsenbein, F., Bauer, P., & Marcout, J. 2000, A&AS, 143, 23 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Pâris, I., Petitjean, P., Ross, N. P., et al. 2017, A&A, 597, A79 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Paturel, G., Petit, C., Prugniel, P., et al. 2003, A&A, 412, 45 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Polsterer, K. L., Gieseke, F., & Igel, C. 2015, in Astronomical Data Analysis Software an Systems XXIV (ADASS XXIV), eds. A. R. Taylor, & E. Rosolowsky, ASP Conf. Ser., 495, 81 [Google Scholar]
- Polsterer, K., Gieseke, F. C., Igel, C., Doser, B., Gianniotis, N., & ESANN, 2016, Proceedings, 0 [Google Scholar]
- Rees, M. J. 1978, Nature, 275, 516 [NASA ADS] [CrossRef] [Google Scholar]
- Rudnick, L., & Owen, F. N. 1976, ApJ, 203, L107 [NASA ADS] [CrossRef] [Google Scholar]
- Rykoff, E. S., Rozo, E., Hollowood, D., et al. 2016, ApJS, 224, 1 [NASA ADS] [CrossRef] [Google Scholar]
- Schilizzi, R. T. 2004, in Ground-based Telescopes, Int. Soc. Opt. Photonics, 5489, 62 [CrossRef] [Google Scholar]
- Schoenmakers, A. P., Röttgering, H. J. A., & de Bruyn, A. G. 1999, in The Most Distant Radio Galaxies, eds. H. J. A. Röttgering, P. N. Best, & M. D. Lehnert, 497 [Google Scholar]
- Segal, G., Parkinson, D., Norris, R. P., & Swan, J. 2018, PASP, 131, 108007 [CrossRef] [Google Scholar]
- Shimwell, T. W., Röttgering, H. J. A., Best, P. N., et al. 2017, A&A, 598, A104 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Shimwell, T., Tasse, C., Hardcastle, M., et al. 2019, A&A, 622, A1 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Skrutskie, M., Cutri, R., Stiening, R., et al. 2006, AJ, 131, 1163 [NASA ADS] [CrossRef] [Google Scholar]
- Sun, C., Shrivastava, A., Singh, S., & Gupta, A. 2017, Proceedings of the IEEE international conference on computer vision, 843 [Google Scholar]
- Szabo, T., Pierpaoli, E., Dong, F., Pipino, A., & Gunn, J. 2011, ApJ, 736, 21 [NASA ADS] [CrossRef] [Google Scholar]
- Tasse, C., et al. 2020, A&A, submitted [Google Scholar]
- Tully, R. B. 1988, Nearby galaxies catalog [Google Scholar]
- Ultsch, A. 1990, Proceedings INNC’90, International Neural Network Conference, 1990 (Kluwer), 305 [Google Scholar]
- van Haarlem, M. P., Wise, M. W., Gunst, A. W., et al. 2013, A&A, 556, A2 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Veron-Cetty, M. P., & Veron, P. 2006, VizieR Online Data Catalog, 7248 [Google Scholar]
- Villmann, T., Der, R., & Martinetz, T. 1994, Proceedings of the IEEE International Conference on Neural Networks (ICNN-94), Orlando, II, 645 [Google Scholar]
- Wake, D. A., Bundy, K., Diamond-Stanic, A. M., et al. 2017, AJ, 154, 86 [NASA ADS] [CrossRef] [Google Scholar]
- Wen, Z., Han, J., & Liu, F. 2012, ApJS, 199, 34 [NASA ADS] [CrossRef] [Google Scholar]
- Wenger, M., Ochsenbein, F., Egret, D., et al. 2000, A&AS, 143, 9 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- White, R. L., Becker, R. H., Helfand, D. J., & Gregg, M. D. 1997, ApJ, 475, 479 [NASA ADS] [CrossRef] [Google Scholar]
- Wilber, A., Brüggen, M., Bonafede, A., et al. 2019, A&A, 622, A25 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Williams, W., Hardcastle, M., Best, P., et al. 2019, A&A, 622, A2 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Wright, E. L., Eisenhardt, P. R. M., Mainzer, A. K., et al. 2010, AJ, 140, 1868 [Google Scholar]
- Wu, C., Wong, O. I., Rudnick, L., et al. 2019, MNRAS, 482, 1211 [NASA ADS] [CrossRef] [Google Scholar]
- Yoon, J. H., Schawinski, K., Sheen, Y.-K., Ree, C. H., & Yi, S. K. 2008, ApJS, 176, 414 [NASA ADS] [CrossRef] [Google Scholar]
- Yuan, Z. S., Han, J. L., & Wen, Z. L. 2016, MNRAS, 460, 3669 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.