Free Access
Issue |
A&A
Volume 643, November 2020
|
|
---|---|---|
Article Number | A43 | |
Number of page(s) | 29 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361/201936278 | |
Published online | 29 October 2020 |
- Ackermann, M., Ajello, M., Allafort, A., et al. 2013, ApJS, 209, 34 [NASA ADS] [CrossRef] [Google Scholar]
- Aujol, J.-F., Gilboa, G., Chan, T., & Osher, S. 2006, Int. J. Comput. Vision, 67, 111 [CrossRef] [Google Scholar]
- Banterle, F., Corsini, M., Cignoni, P., & Scopigno, R. 2012, Comput. Graphics Forum, 31, 19 [CrossRef] [Google Scholar]
- Barchi, P., de Carvalho, R., Rosa, R., et al. 2020, Astron. Comput., 30, 100334 [CrossRef] [Google Scholar]
- Beckouche, S., Starck, J.-L., & Fadili, J. 2013, A&A, 556, A132 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Bertero, M., & Boccacci, P. 1998, Introduction to Inverse Problems in Imaging (CRC Press) [CrossRef] [Google Scholar]
- Bertero, M., & Piana, M. 2006 Inverse problems in biomedical imaging: modeling and methods of solution, eds. A. Quarteroni, L. Formaggia, & A. Veneziani (Milano: Springer Milan), 1 [Google Scholar]
- Bertin, E. 2009, Mem. Soc. Astron. It., 80, 422 [NASA ADS] [Google Scholar]
- Bertin, E., & Arnouts, S. 1996, A&AS, 117, 393 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Black, M. J., Sapiro, G., Marimont, D. H., & Heeger, D. 1998, IEEE Trans. Image Process., 7, 421 [CrossRef] [Google Scholar]
- Buades, A., Coll, B., & Morel, J. M. 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), 2, 60 [CrossRef] [Google Scholar]
- Buades, A., Coll, B., & Morel, J.-M. 2011, Image Process. Line, 1, 208 [Google Scholar]
- Bush, J. 2011, Master’s thesis, University of California, Santa Barbara, http://www.math.ucsb.edu/ cgarcia/UGProjects/BregmanAlgorithms_JacquelineBush.pdf [Google Scholar]
- Castellano, M., Ottaviani, D., Fontana, A., et al. 2015, in Astronomical Data Analysis Software and Systems XXIV (ADASS XXIV), eds. A. R. Taylor, & E. Rosolowsky, ASP Conf. Ser., 495, 257 [Google Scholar]
- Castellano, M., Fontana, A., Boutsia, K., et al. 2010, A&A, 511, A20 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Chambolle, A. 2004, J. Math. Imaging Vision, 20, 89 [CrossRef] [Google Scholar]
- Chang, S. G., Yu, B., & Vetterli, M. 2000, IEEE Trans. Image Process., 9, 1532 [NASA ADS] [CrossRef] [Google Scholar]
- Dabov, K., Foi, A., Katkovnik, V., & Egiazarian, K. 2007, IEEE Trans. Image Process., 16, 2080 [Google Scholar]
- Darbon, J., Cunha, A., Chan, T. F., Osher, S., & Jensen, G. J. 2008, 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 1331 [CrossRef] [Google Scholar]
- Dark Energy Survey Collaboration (Abbott, T., et al.), 2016, MNRAS, 460, 1270 [NASA ADS] [CrossRef] [Google Scholar]
- Donoho, D. L., & Johnstone, J. M. 1994, Biometrika, 81, 425 [CrossRef] [MathSciNet] [Google Scholar]
- Fontana, A., Dunlop, J. S., Paris, D., et al. 2014, A&A, 570, A11 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Frontera-Pons, J., Sureau, F., Bobin, J., & Le Floc’h, E. 2017, A&A, 603, A60 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Gabor, D. 1965, Lab. Invest., 14, 801 [Google Scholar]
- Getreuer, P. 2012, Image Process. Line, 2, 74 [CrossRef] [Google Scholar]
- Goldstein, T., & Osher, S. 2009, SIAM J. Imaging Sci., 2, 323 [CrossRef] [Google Scholar]
- Grogin, N. A., Kocevski, D. D., Faber, S. M., et al. 2011, ApJS, 197, 35 [NASA ADS] [CrossRef] [Google Scholar]
- Guo, Z., Sun, J., Zhang, D., & Wu, B. 2012, IEEE Trans. Image Process., 21, 958 [CrossRef] [Google Scholar]
- Guo, Y., Ferguson, H. C., Giavalisco, M., et al. 2013, ApJS, 207, 24 [NASA ADS] [CrossRef] [Google Scholar]
- Jones, E., Oliphant, T., Peterson, P., et al. 2001, SciPy: Open source scientific tools for Python [Google Scholar]
- Karmakar, A., Mishra, D., & Tej, A., 2018, ArXiv e-prints [arXiv:1809.01434] [Google Scholar]
- Khalifa, N. E. M., Taha, M. H. N., Hassanien, A. E., & Selim, I. M. 2017, ArXiv e-prints [arXiv:1709.02245] [Google Scholar]
- Koekemoer, A. M., Faber, S. M., Ferguson, H. C., et al. 2011, ApJS, 197, 36 [NASA ADS] [CrossRef] [Google Scholar]
- Kolmogorov, A. M., & Fomin, S. V. 1957, Elements of the Theory of Functions and Functional Analysis (Dover Publications) [Google Scholar]
- Laureijs, R., Amiaux, J., Arduini, S., et al. 2011, ArXiv e-prints [arXiv:1110.3193] [Google Scholar]
- Lee, G. R., Gommers, R., Waselewski, F., Wohlfahrt, K., & O’Leary, A. 2019, J. Open Sour. Softw., 4, 1237 [CrossRef] [Google Scholar]
- Lesser, M. 2015, PASP, 127, 1097 [CrossRef] [Google Scholar]
- Lindenbaum, M., Fischer, M., & Bruckstein, A. 1994, Pattern Recogn., 27, 1 [CrossRef] [Google Scholar]
- LSST Science Collaboration (Abell, P. A., et al.) 2009, ArXiv e-prints [arXiv:0912.0201] [Google Scholar]
- Mallat, S. 2001, IEEE Trans. Pattern Anal. Mach. Intell., 11, 674 [NASA ADS] [CrossRef] [Google Scholar]
- Meyer, Y. 1990, Ondelettes et opérateurs: Ondelettes (Hermann) [Google Scholar]
- Neyman, J., & Pearson, E. S. 1933, Phil. Trans. R. Soc. A: Math., Phys. Eng. Sci., 231, 289337 [Google Scholar]
- Oke, J. B., & Gunn, J. E. 1983, ApJ, 266, 713 [NASA ADS] [CrossRef] [Google Scholar]
- Perona, P., & Malik, J. 1990, IEEE Trans. Pattern Anal. Mach. Intell., 12, 629 [CrossRef] [Google Scholar]
- Peyré, G., Fadili, J., & Starck, J.-L. 2010, SIAM J. Imaging Sci., 3, 646 [CrossRef] [Google Scholar]
- Pierre, M., Valtchanov, I., Altieri, B., et al. 2004, JCAP, 2004, 011 [CrossRef] [Google Scholar]
- Principe, G., Malyshev, D., Ballet, J., & Funk, S. 2018, A&A, 618, A22 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Romeo, A. B., Horellou, C., & Bergh, J. 2003, MNRAS, 342, 337 [NASA ADS] [CrossRef] [Google Scholar]
- Rudin, L. I., Osher, S., & Fatemi, E. 1992, Phys. D: Nonlinear Phenom., 60, 259 [CrossRef] [Google Scholar]
- Schreiber, C., Elbaz, D., Pannella, M., et al. 2017, A&A, 602, A96 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Shen, H., George, D., Huerta, E. A., & Zhao, Z. 2017, ArXiv e-prints [arXiv:1711.09919] [Google Scholar]
- Shensa, M. J. 1992, IEEE Trans. Signal Process., 40, 2464 [NASA ADS] [CrossRef] [Google Scholar]
- Skelton, R. E., Whitaker, K. E., Momcheva, I. G., et al. 2014, ApJS, 214, 24 [Google Scholar]
- Spergel, D., Gehrels, N., Baltay, C., et al. 2015, ArXiv e-prints [arXiv:1503.03757] [Google Scholar]
- Starck, J. L., Aghanim, N., & Forni, O. 2004, A&A, 416, 9 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Starck, J. L., Moudden, Y., Abrial, P., & Nguyen, M. 2006, A&A, 446, 1191 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Starck, J.-L., Murtagh, F., & Fadili, J. 2010, Sparse Image and Signal Processing: Wavelets and Related Geometric Multiscale Analysis (Cambridge University Press) [Google Scholar]
- Starck, J.-L., Murtagh, F., & Bertero, M. 2014, Starlet Transform Astron. Data Process., 1 [Google Scholar]
- Tomasi, C., & Manduchi, R. 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271), 839 [CrossRef] [Google Scholar]
- Tuccillo, D., Huertas-Company, M., Decenciére, E., & Velasco-Forero, S. 2017 Proc. International Astronomical Union, IAU Symp., 325, 191 [Google Scholar]
- Valens, C. 1999, A Really Friendly Guide to Wavelets [Google Scholar]
- van der Walt, S., Schönberger, J. L., Nunez-Iglesias, J., et al. 2014, PeerJ, 2, e453 [Google Scholar]
- Vetterli, M., & Kovačevic, J. 1995, Wavelets and Subband Coding (Upper Saddle River, NJ, USA: Prentice-Hall, Inc.) [Google Scholar]
- Vincent, P., Larochelle, H., Bengio, Y., & Manzagol, P. A. 2008, Proceedings of the 25th International Conference on Machine Learning, ICML ’08 (New York, NY, USA: Association for Computing Machinery), 1096 [Google Scholar]
- Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., & Manzagol, P.-A. 2010, J. Mach. Learn. Res., 11, 3371 [Google Scholar]
- Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. 2004, IEEE Trans. Image Process., 13, 600 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Weickert, J. 1998, Anisotropic Diffusion in Image Processing (Teubner) [Google Scholar]
- Winkler, A. M. 2011, Gaussian kernels: convert FWHM to sigma [Google Scholar]
- Xie, J., Xu, L., & Chen, E. 2012, in Advances in Neural Information Processing Systems, eds. F. Pereira, C. J. C. Burges, L. Bottou, & K. Q. Weinberger (Curran Associates, Inc.), 25, 341 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.