Free Access
Issue
A&A
Volume 639, July 2020
Article Number A91
Number of page(s) 18
Section Cosmology (including clusters of galaxies)
DOI https://doi.org/10.1051/0004-6361/202037995
Published online 14 July 2020
  1. Alimi, J. M., Bouillot, V., & Rasera, Y. 2012, DEUS Full Observable ΛCDM Universe Simulation: the numerical challenge [Google Scholar]
  2. Alsing, J., Wandelt, B., & Feeney, S. 2018, MNRAS, 477, 2874 [NASA ADS] [CrossRef] [Google Scholar]
  3. Amdahl, G. M. 1967, in Proceedings of the April 18–20, 1967, Spring Joint Computer Conference, AFIPS ’67 (Spring) (New York, NY, USA: Association for Computing Machinery), 483 [CrossRef] [Google Scholar]
  4. Aubert, D., Deparis, N., & Ocvirk, P. 2015, MNRAS, 454, 1012 [Google Scholar]
  5. Audren, B., Lesgourgues, J., Bird, S., Haehnelt, M. G., & Viel, M. 2013, J. Cosmology Astropart. Phys., 2013, 026 [Google Scholar]
  6. Austermann, J. E., Aird, K. A., & Beall, J. A. 2012, SPTpol: an instrument for CMB polarization measurements with the South Pole Telescope, SPIE Conf. Ser., 8452, 84521E [Google Scholar]
  7. Bagla, J. S., & Padmanabhan, T. 1994, MNRAS, 266, 227 [NASA ADS] [CrossRef] [Google Scholar]
  8. Barausse, E., Berti, E., & Hertog, T. 2020, Prospects for Fundamental Physics with LISA [Google Scholar]
  9. Berger, M. J., & Colella, P. 1989, J. Comp. Phys., 82, 64 [NASA ADS] [CrossRef] [Google Scholar]
  10. Bernardeau, F., Colombi, S., Gaztañaga, E., & Scoccimarro, R. 2002, Phys. Rep., 367, 1 [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  11. Birdsall, C. K., & Langdon, A. B. 1985, Plasma Physics via Computer Simulation (CRC Press) [Google Scholar]
  12. Bouchet, F. R., Colombi, S., Hivon, E., & Juszkiewicz, R. 1995, A&A, 296, 575 [NASA ADS] [Google Scholar]
  13. Brainerd, T. G., Scherrer, R. J., & Villumsen, J. V. 1993, ApJ, 418, 570 [CrossRef] [Google Scholar]
  14. Bryan, G. L., Norman, M. L., O’Shea, B. W., et al. 2014, ApJS, 211, 19 [NASA ADS] [CrossRef] [Google Scholar]
  15. Buchert, T., Melott, A. L., & Weiß, A. G. 1994, A&A, 288, 349 [Google Scholar]
  16. Cheng, S., Yu, H.-R., Inman, D., et al. 2020, CUBE - Towards an Optimal Scaling of Cosmological N-body Simulations [Google Scholar]
  17. Chisari, N. E., Richardson, M. L. A., Devriendt, J., et al. 2018, MNRAS, 480, 3962 [NASA ADS] [CrossRef] [Google Scholar]
  18. DESI Collaboration 2016, The DESI Experiment Part I: Science, Targeting, and Survey Design [Google Scholar]
  19. Eisenstein, D. J., & Hu, W. 1998, ApJ, 496, 605 [NASA ADS] [CrossRef] [Google Scholar]
  20. Eisenstein, D. J., & Hu, W. 1999, ApJ, 511, 5 [NASA ADS] [CrossRef] [Google Scholar]
  21. Frigo, M., & Johnson, S. G. 2005, Program Generation, Optimization, and Platform Adaptation, Proc. IEEE, 93, 216 [Google Scholar]
  22. Fryxell, B., Olson, K., Ricker, P., et al. 2000, ApJS, 131, 273 [NASA ADS] [CrossRef] [Google Scholar]
  23. Garrison, L. H., Eisenstein, D. J., & Pinto, P. A. 2019, MNRAS, 485, 3370 [CrossRef] [Google Scholar]
  24. Gonnet, P., Schaller, M., Theuns, T., & Chalk, A. B. G. 2013, SWIFT: Fast Algorithms for Multi-resolution SPH on Multi-Core Architectures [Google Scholar]
  25. Guillet, T., & Teyssier, R. 2011, J. Comp. Phys., 230, 4756 [NASA ADS] [CrossRef] [Google Scholar]
  26. Hahn, O., & Abel, T. 2011, MNRAS, 415, 2101 [NASA ADS] [CrossRef] [Google Scholar]
  27. Hahn, O., Angulo, R. E., & Abel, T. 2015, MNRAS, 454, 3920 [NASA ADS] [CrossRef] [Google Scholar]
  28. Hockney, R. W., & Eastwood, J. W. 1981, Computer Simulation Using Particles (McGraw-Hill) [Google Scholar]
  29. Howlett, C., Manera, M., & Percival, W. J. 2015, Astron. Comput., 12, 109 [NASA ADS] [CrossRef] [Google Scholar]
  30. Hunter, J. D. 2007, Comput. Sci. Eng., 9, 90 [NASA ADS] [CrossRef] [Google Scholar]
  31. Huterer, D., & Takada, M. 2005, Astroparticle Phys., 23, 369 [NASA ADS] [CrossRef] [Google Scholar]
  32. Izard, A., Crocce, M., & Fosalba, P. 2016, MNRAS, 459, 2327 [NASA ADS] [CrossRef] [Google Scholar]
  33. James, R. A. 1977, J. Comp. Phys., 25, 71 [NASA ADS] [CrossRef] [Google Scholar]
  34. Johnson, S. G., & Frigo, M. 2008, in Fast Fourier Transforms, ed. C. S. Burrus (Houston TX: Rice University Connexions) [Google Scholar]
  35. Kluyver, T., Ragan-Kelley, B., & Pérez, F. 2016, ELPUB [Google Scholar]
  36. Klypin, A., & Holtzman, J. 1997, Particle-Mesh code for cosmological simulations [Google Scholar]
  37. Knebe, A., & Doumler, T. 2010, AMIGA: Adaptive Mesh Investigations of Galaxy Assembly [Google Scholar]
  38. Koda, J., Blake, C., Beutler, F., Kazin, E., & Marin, F. 2016, MNRAS, 459, 2118 [NASA ADS] [CrossRef] [Google Scholar]
  39. Laureijs, R., Amiaux, J., & Arduini, S. 2011, Euclid Definition Study Report [Google Scholar]
  40. Leclercq, F. 2015, Ph.D. Thesis, Institut d’Astrophysique de Paris [Google Scholar]
  41. Leclercq, F. 2018, Phys. Rev. D, 98, 063511 [NASA ADS] [CrossRef] [Google Scholar]
  42. Leclercq, F., Jasche, J., & Wandelt, B. 2015, J. Cosmol. Astropart. Phys., 6, 15 [CrossRef] [Google Scholar]
  43. Leclercq, F., Jasche, J., Lavaux, G., Wandelt, B., & Percival, W. 2017, J. Cosmol. Astropart. Phys., 6, 049 [NASA ADS] [CrossRef] [Google Scholar]
  44. Leclercq, F., Enzi, W., Jasche, J., & Heavens, A. 2019, MNRAS, 490, 4237 [NASA ADS] [CrossRef] [Google Scholar]
  45. LIGO Scientific Collaboration 2015, Class. Quant. Grav., 32, 074001 [CrossRef] [Google Scholar]
  46. LSST Science Collaboration 2012, Large Synoptic Survey Telescope: Dark Energy Science Collaboration [Google Scholar]
  47. Merloni, A., Predehl, P., Becker, W., et al. 2012, eROSITA Science Book: Mapping the Structure of the (Energetic Universe) [Google Scholar]
  48. Ocvirk, P., Gillet, N., Shapiro, P. R., et al. 2016, MNRAS, 463, 1462 [NASA ADS] [CrossRef] [Google Scholar]
  49. Perez, F., & Granger, B. E. 2007, Comput. Sci. Eng., 9, 21 [Google Scholar]
  50. Planck Collaboration XIII. 2016, A&A, 594, A13 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  51. Potter, D., Stadel, J., & Teyssier, R. 2017, Comput Astrophys. Cosmology., 4, 2 [Google Scholar]
  52. Quinn, T., Katz, N., Stadel, J., & Lake, G. 1997, Time stepping N-body simulations [Google Scholar]
  53. Schneider, A., Teyssier, R., Stadel, J., et al. 2019, J. Cosmol. Astropart. Phys., 3, 020 [CrossRef] [Google Scholar]
  54. Simon, S. M., Beall, J. A., Cothard, N. F., et al. 2018, J. Low. Temp. Phys., 193, 1041 [CrossRef] [Google Scholar]
  55. Simons Observatory Collaboration 2019, J. Cosmol. Astropart. Phys., 2, 056 [Google Scholar]
  56. SPHEREx Science Team 2018, Am. Astron. Soc. Meet. Abstr., 231, 354.21 [Google Scholar]
  57. Square Kilometre Array Cosmology Science Working Group 2018, Cosmology with Phase 1 of the Square Kilometre Array; Red Book 2018: Technical specifications and performance forecasts [Google Scholar]
  58. Strauss, M. A., Cen, R., Ostriker, J. P., Lauer, T. R., & Postman, M. 1995, ApJ, 444, 507 [CrossRef] [Google Scholar]
  59. Tassev, S., & Zaldarriaga, M. 2012, J. Cosmol. Astropart. Phys., 12, 11 [CrossRef] [Google Scholar]
  60. Tassev, S., Eisenstein, D. J., Wandelt, B. D., & Zaldarriaga, M. 2015, sCOLA: The N-body COLA Method Extended to the Spatial Domain [Google Scholar]
  61. Tassev, S., Zaldarriaga, M., & Eisenstein, D. J. 2013, J. Cosmol. Astropart. Phys., 6, 36 [CrossRef] [Google Scholar]
  62. Teyssier, R. 2002, A&A, 385, 337 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  63. The Virgo Collaboration 2020, J. Phys. Conf. Ser., 1342, 012010 [CrossRef] [Google Scholar]
  64. Theuns, T., Chalk, A., Schaller, M., & Gonnet, P. 2015, SWIFT: task-based Hydrodynamics and Gravity for Cosmological Simulations [Google Scholar]
  65. Thyng, K. M., Greene, C. A., Hetland, R. D., Zimmerle, H. M. 2016, Oceanography, 29 [Google Scholar]
  66. van Daalen, M. P., Schaye, J., Booth, C. M., & Dalla Vecchia, C. 2011, MNRAS, 415, 3649 [NASA ADS] [CrossRef] [Google Scholar]
  67. van der Walt, S., Colbert, S. C., & Varoquaux, G. 2011, Comput. Sci. Eng., 13, 22 [Google Scholar]
  68. Yu, H.-R., Pen, U.-L., & Wang, X. 2018, ApJS, 237, 24 [CrossRef] [Google Scholar]
  69. Zel’dovich, Y. B. 1970, A&A, 5, 84 [NASA ADS] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.