Free Access
Issue
A&A
Volume 638, June 2020
Article Number A137
Number of page(s) 10
Section Celestial mechanics and astrometry
DOI https://doi.org/10.1051/0004-6361/202037696
Published online 26 June 2020
  1. Barrabés, E., & Ollè, M. 2006, Nonlinearity, 19, 2065 [CrossRef] [Google Scholar]
  2. Froeschlé, C., Gonczi, R., & Lega, E. 1997a, Planet. Space Sci., 45, 881 [NASA ADS] [CrossRef] [Google Scholar]
  3. Froeschlé, C., Lega, E., & Gonczi, R. 1997b, Celestial Mech. Dyn. Astron., 67, 41 [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  4. Gómez, G., & Mondelo, J. 2001, Physica D, 157, 283 [NASA ADS] [CrossRef] [Google Scholar]
  5. Gómez, G., Llibre, J., Martínez, R., & Simó, C. 2001, in Dynamics and Mission Design Near Libration Points, World Scientific Monograph Series in Mathematics (World Scientific Publishing Co. Inc.), 1 [Google Scholar]
  6. Gómez, G., Koon, W., Lo, M., et al. 2004, Nonlinearity, 17, 1571 [NASA ADS] [CrossRef] [Google Scholar]
  7. Guzzo, M., & Lega, E. 2013, MNRAS, 428, 2688 [NASA ADS] [CrossRef] [Google Scholar]
  8. Guzzo, M., & Lega, E. 2014, Soc. Ind. Appl. Math., 74, 1058 [CrossRef] [Google Scholar]
  9. Guzzo, M., & Lega, E. 2015, A&A, 579, 1 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  10. Guzzo, M., & Lega, E. 2017, MNRAS, 469, S321 [CrossRef] [Google Scholar]
  11. Guzzo, M., & Lega, E. 2018, Physica D, 373, 38 [CrossRef] [Google Scholar]
  12. Hou, X., Tang, J., & Liu, L. 2007, NASA Technical Report: 20080012700 [Google Scholar]
  13. Jorba, À., & Nicolás, B. 2020, Communications in Nonlinear Science and Numerical Simulation, 89, 105327 [CrossRef] [Google Scholar]
  14. Koon, W. S., Lo, M. W., Marsden, J. E., & Ross, S. D. 2006, Dynamical Systems, The Three-Body Problem, and Space Mission Design (Pasadena, CA, USA: California Institute of Technology) [Google Scholar]
  15. Lega, E., & Guzzo, M. 2016, Physica D, 325, 41 [CrossRef] [Google Scholar]
  16. Lega, E., Guzzo, M., & Froeschlé, C. 2011, MNRAS, 418, 107 [NASA ADS] [CrossRef] [Google Scholar]
  17. Martin, C., Conway, B. A., & Ibánez, P. 2010, in Space Manifold Dynamics: Novel Spaceways for Science and Exploration, eds. E. Perozzi, & S. Ferraz-Mello (Springer) [Google Scholar]
  18. Pàez, R., & Efthymiopoulos, C. 2015, Celestial Mech. Dyn. Astron., 121, 139 [NASA ADS] [CrossRef] [Google Scholar]
  19. Parker, J., & Anderson, R. L. 2013, Low-Energy Lunar Trajectory Design (Pasadena, CA: Jet Propulsion Laboratory, California Institute of Technology) [Google Scholar]
  20. Szebehely, V. 1967, Theory of Orbits: The Restricted Problem of Three Bodies (Academic Press) [Google Scholar]
  21. Tantardini, M., Fantino, E., Ren, Y., et al. 2010, Celestial Mech. Dyn. Astron., 108, 215 [CrossRef] [Google Scholar]
  22. Terra, M. O., Simó, C., & de Sousa Silva, P. 2014, Proc. IAC, 6, 4535 [Google Scholar]
  23. van Damme, C. C., Gorgojo, R. C., Gil-Fernandez, J., & Graziano, M. 2010, in Space Manifold Dynamics: Novel Spaceways for Science and Exploration, eds. E. Perozzi, & S. Ferraz-Mello (Springer) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.