Free Access
Issue
A&A
Volume 624, April 2019
Article Number A102
Number of page(s) 17
Section Extragalactic astronomy
DOI https://doi.org/10.1051/0004-6361/201834575
Published online 18 April 2019
  1. Acquaviva, V., Gawiser, E., & Guaita, L. 2011, ApJ, 737, 47 [NASA ADS] [CrossRef] [Google Scholar]
  2. Alam, S., Albareti, F. D., Allende Prieto, C., et al. 2015, ApJS, 219, 12 [NASA ADS] [CrossRef] [Google Scholar]
  3. Alger, M. J., Banfield, J. K., Ong, C. S., et al. 2018, MNRAS, 478, 5556 [Google Scholar]
  4. Baldry, I. K., Glazebrook, K., & Driver, S. P. 2008, MNRAS, 388, 945 [NASA ADS] [Google Scholar]
  5. Bell, E. F., & de Jong, R. S. 2001, ApJ, 550, 212 [NASA ADS] [CrossRef] [Google Scholar]
  6. Bertin, E., Mellier, Y., Radovich, M., et al. 2002, in Astronomical Data Analysis Software and Systems XI, eds. D. A. Bohlender, D. Durand, T. H. Handley, ASP Conf. Ser., 281, 228 [NASA ADS] [Google Scholar]
  7. Bilicki, M., Hoekstra, H., Brown, M. J. I., et al. 2018, A&A, 616, A69 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  8. Boquien, M., Burgarella, D., Roehlly, Y., et al. 2018, A&A, 622, A103 [Google Scholar]
  9. Breiman, L. 1996, Mach. Learn., 24, 123 [Google Scholar]
  10. Brinchmann, J., Charlot, S., White, S. D. M., et al. 2004, MNRAS, 351, 1151 [NASA ADS] [CrossRef] [Google Scholar]
  11. Bruzual, G., & Charlot, S. 2003, MNRAS, 344, 1000 [NASA ADS] [CrossRef] [Google Scholar]
  12. Camps, P., & Baes, M. 2015, Astron. Comput., 9, 20 [NASA ADS] [CrossRef] [Google Scholar]
  13. Camps, P., Trčka, A., Trayford, J., et al. 2018, ApJS, 234, 20 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  14. Carnall, A. C., McLure, R. J., Dunlop, J. S., & Davé, R. 2018, MNRAS, 480, 4379 [NASA ADS] [CrossRef] [Google Scholar]
  15. Chabrier, G. 2003, Publ. Astron. Soc. Pac., 115, 763 [CrossRef] [Google Scholar]
  16. Chevallard, J., & Charlot, S. 2016, MNRAS, 462, 1415 [NASA ADS] [CrossRef] [Google Scholar]
  17. Chevallard, J., Charlot, S., Senchyna, P., et al. 2018, MNRAS, 479, 3264 [NASA ADS] [CrossRef] [Google Scholar]
  18. Chollet, F. 2017, ArXiv e-prints [arXiv:1610.02357] [Google Scholar]
  19. Conroy, C. 2013, ARA&A, 51, 393 [NASA ADS] [CrossRef] [Google Scholar]
  20. Cortese, L., Ciesla, L., Boselli, A., et al. 2012, A&A, 540, A52 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  21. da Cunha, E., Charlot, S., & Elbaz, D. 2008, MNRAS, 388, 1595 [NASA ADS] [CrossRef] [Google Scholar]
  22. Dai, J.-M., & Tong, J. 2018, ArXiv e-prints [arXiv:1807.10406] [Google Scholar]
  23. Deng, J., Dong, W., Socher, R., et al. 2009, Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on (IEEE), 248 [CrossRef] [Google Scholar]
  24. Dieleman, S., Willett, K. W., & Dambre, J. 2015, MNRAS, 450, 1441 [NASA ADS] [CrossRef] [Google Scholar]
  25. Dietterich, T. G. 2000, Mach. Learn., 40, 139 [CrossRef] [Google Scholar]
  26. Domínguez Sánchez, H., Huertas-Company, M., Bernardi, M., Tuccillo, D., & Fischer, J. L. 2018, MNRAS, 476, 3661 [NASA ADS] [CrossRef] [Google Scholar]
  27. Dozat, T. 2016, Incorporating Nesterov Momentum into Adam [Google Scholar]
  28. Friedman, J. H. 2001, Ann. stat., 1189 [Google Scholar]
  29. Friedman, J. H. 2002, Comput. Stat. Data Anal., 38, 367 [CrossRef] [Google Scholar]
  30. Gallazzi, A., Charlot, S., Brinchmann, J., White, S. D. M., & Tremonti, C. A. 2005, MNRAS, 362, 41 [NASA ADS] [CrossRef] [Google Scholar]
  31. Glorot, X., & Bengio, Y. 2010, J. Mach. Learn. Res., 9, 249 [Google Scholar]
  32. Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. 2016, Deep Learning (Cambridge: MIT press), 1 [Google Scholar]
  33. Hart, R. E., Bamford, S. P., Willett, K. W., et al. 2016, MNRAS, 461, 3663 [NASA ADS] [CrossRef] [Google Scholar]
  34. He, K., Zhang, X., Ren, S., & Sun, J. 2016, Proceedings of the IEEE conference on computer vision and pattern recognition, 770 [Google Scholar]
  35. Holmberg, E. 1958, Meddelanden fran Lunds Astronomiska Observatorium Serie II, 1 [Google Scholar]
  36. Hoo-Chang, S., Roth, H. R., Gao, M., et al. 2016, IEEE Trans. Med. Imaging, 35, 1285 [Google Scholar]
  37. Hornik, K., Stinchcombe, M., & White, H. 1989, Neural Networks, 2, 359 [CrossRef] [Google Scholar]
  38. Hoyle, B. 2016, Astron. Comput., 16, 34 [NASA ADS] [CrossRef] [Google Scholar]
  39. Huertas-Company, M., Primack, J. R., Dekel, A., et al. 2018, ApJ, 858, 114 [NASA ADS] [CrossRef] [Google Scholar]
  40. Ioffe, S., & Szegedy, C. 2015, ArXiv e-prints [arXiv:1502.03167] [Google Scholar]
  41. Ivezić, Z, Kahn, S. M., Tyson, J. A., et al. 2019, ApJ, 873, 111 [NASA ADS] [CrossRef] [Google Scholar]
  42. Jahnke, K., Bongiorno, A., Brusa, M., et al. 2009, ApJ, 706, L215 [NASA ADS] [CrossRef] [Google Scholar]
  43. Joseph, R. D., & Wright, G. S. 1985, MNRAS, 214, 87 [NASA ADS] [Google Scholar]
  44. Ke, G., Meng, Q., Finley, T., et al. 2017, Adv. Neural Inf. Proc. Syst., 3149 [Google Scholar]
  45. Kingma, D. P., & Ba, J. 2014, ArXiv e-prints [arXiv:1412.6980] [Google Scholar]
  46. Kravtsov, A. V., Vikhlinin, A. A., & Meshcheryakov, A. V. 2018, Astron. Lett., 44, 8 [NASA ADS] [CrossRef] [Google Scholar]
  47. Kriek, M., van Dokkum, P. G., Labbé, I., et al. 2009, ApJ, 700, 221 [NASA ADS] [CrossRef] [Google Scholar]
  48. Krizhevsky, A., Sutskever, I., & Hinton, G. E. 2012, Adv. Proc. Syst. Neural Inf., 1097 [Google Scholar]
  49. Lara-López, M. A., Cepa, J., Bongiovanni, A., et al. 2010, A&A, 521, L53 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  50. Laureijs, R., Gondoin, P., Duvet, L., et al. 2012, in Space Telescopes and Instrumentation 2012: Optical, Infrared, and Millimeter Wave, International Society for Optics and Photonics, 8442, 84420T [NASA ADS] [CrossRef] [Google Scholar]
  51. LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. 1998, Proc. IEEE, 86, 2278 [Google Scholar]
  52. Leja, J., Johnson, B. D., Conroy, C., van Dokkum, P. G., & Byler, N. 2017, ApJ, 837, 170 [NASA ADS] [CrossRef] [Google Scholar]
  53. Makarov, D., Prugniel, P., Terekhova, N., Courtois, H., & Vauglin, I. 2014, A&A, 570, A13 [CrossRef] [EDP Sciences] [Google Scholar]
  54. Mannucci, F., Cresci, G., Maiolino, R., Marconi, A., & Gnerucci, A. 2010, MNRAS, 408, 2115 [NASA ADS] [CrossRef] [Google Scholar]
  55. Maraston, C. 2005, MNRAS, 362, 799 [NASA ADS] [CrossRef] [Google Scholar]
  56. Marmanis, D., Datcu, M., Esch, T., & Stilla, U. 2016, IEEE Geosci. Remote Sens. Lett., 13, 105 [NASA ADS] [CrossRef] [Google Scholar]
  57. Mason, L., Baxter, J., Bartlett, P. L., & Frean, M. R. 2000, Adv. Proc. Syst. Neural Inf., 512 [Google Scholar]
  58. McGaugh, S. S., & Schombert, J. M. 2014, AJ, 148, 77 [NASA ADS] [CrossRef] [Google Scholar]
  59. Meidt, S. E., Schinnerer, E., Van De Ven, G., et al. 2014, ApJ, 788, 144 [NASA ADS] [CrossRef] [Google Scholar]
  60. Nair, V., & Hinton, G. E. 2010, Proc. 27th Int. Conf. Mach. Learn. (ICML-10), 807 [Google Scholar]
  61. Narula, S. C., & Wellington, J. F. 1982, Int. Stat. Rev., 317 [CrossRef] [Google Scholar]
  62. Noll, S., Burgarella, D., Giovannoli, E., et al. 2009, A&A, 507, 1793 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  63. Ntampaka, M., Eisenstein, D., ZuHone, J., et al. 2018, ApJ, submitted [arXiv:1810.07703] [Google Scholar]
  64. Opitz, D., & Maclin, R. 1999, J. Artif. Intell. Res., 11, 169 [CrossRef] [Google Scholar]
  65. Pasquet, J., Bertin, E., Treyer, M., Arnouts, S., & Fouchez, D. 2018, A&A, 621, A26 [Google Scholar]
  66. Pillepich, A., Nelson, D., Hernquist, L., et al. 2018, MNRAS, 475, 648 [NASA ADS] [CrossRef] [Google Scholar]
  67. Raschka, S. 2015, Python Machine Learning (Packt Publishing Ltd) [Google Scholar]
  68. Rhoads, J. E. 1998, AJ, 115, 472 [NASA ADS] [CrossRef] [Google Scholar]
  69. Rix, H.-W., & Rieke, M. J. 1993, ApJ, 418, 123 [NASA ADS] [CrossRef] [Google Scholar]
  70. Roberts, M. S., & Haynes, M. P. 1994, ARA&A, 32, 115 [NASA ADS] [CrossRef] [Google Scholar]
  71. Salim, S., Lee, J. C., Janowiecki, S., et al. 2016, ApJS, 227, 2 [NASA ADS] [CrossRef] [Google Scholar]
  72. Salim, S., Boquien, M., & Lee, J. C. 2018, ApJ, 859, 11 [NASA ADS] [CrossRef] [Google Scholar]
  73. Salpeter, E. E. 1955, ApJ, 121, 161 [Google Scholar]
  74. Sancisi, R., Fraternali, F., Oosterloo, T., & Van Der Hulst, T. 2008, A&ARv, 15, 189 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  75. Schaye, J., Crain, R. A., Bower, R. G., et al. 2015, MNRAS, 446, 521 [Google Scholar]
  76. Simard, P. Y., Steinkraus, D., & Platt, J. C. 2003, Proceedings of the Seventh International Conference on Document Analysis and Recognition (IEEE), 958 [Google Scholar]
  77. Simonyan, K., & Zisserman, A. 2014, ArXiv e-prints [arXiv:1409.1556] [Google Scholar]
  78. Somerville, R. S., & Davé, R. 2015, ARA&A, 53, 51 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  79. Sorba, R., & Sawicki, M. 2015, MNRAS, 452, 235 [NASA ADS] [CrossRef] [Google Scholar]
  80. Sorba, R., & Sawicki, M. 2018, MNRAS, 476, 1532 [NASA ADS] [CrossRef] [Google Scholar]
  81. Spergel, D., Gehrels, N., Baltay, C., et al. 2015, ArXiv e-prints [arXiv:1503.03757] [Google Scholar]
  82. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. 2014, J. Mach. Learn. Res., 15, 1929 [Google Scholar]
  83. Strobl, C., Boulesteix, A.-L., Zeileis, A., & Hothorn, T. 2007, BMC Bioinf., 8, 25 [Google Scholar]
  84. Szegedy, C., Liu, W., Jia, Y., et al. 2015, ArXiv e-prints [arXiv:1409.4842] [Google Scholar]
  85. Tremonti, C. A., Heckman, T. M., Kauffmann, G., et al. 2004, ApJ, 613, 898 [NASA ADS] [CrossRef] [Google Scholar]
  86. Vafaei Sadr, A., Vos, E. E., Bassett, B. A., et al. 2019, MNRAS, 484, 2793 [NASA ADS] [CrossRef] [Google Scholar]
  87. Walcher, J., Groves, B., Budavári, T., & Dale, D. 2011, Ap&SS, 331, 1 [NASA ADS] [CrossRef] [Google Scholar]
  88. Willett, K. W., Lintott, C. J., Bamford, S. P., et al. 2013, MNRAS, 435, 2835 [NASA ADS] [CrossRef] [Google Scholar]
  89. Zibetti, S., Charlot, S., & Rix, H.-W. 2009, MNRAS, 400, 1181 [NASA ADS] [CrossRef] [Google Scholar]
  90. Zoph, B., & Le, Q. V. 2016, ArXiv e-prints [arXiv:1611.01578] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.