Free Access
Issue
A&A
Volume 606, October 2017
Article Number A119
Number of page(s) 10
Section Numerical methods and codes
DOI https://doi.org/10.1051/0004-6361/201730792
Published online 23 October 2017
  1. Abt, H. A., & Levy, S. G. 1976, ApJS, 30, 273 [NASA ADS] [CrossRef] [Google Scholar]
  2. Antilogus, P., Astier, P., Doherty, P., Guyonnet, A., & Regnault, N. 2014, Journal of Instrumentation, 9, C03048 [CrossRef] [Google Scholar]
  3. Astropy Collaboration, Robitaille, T. P., Tollerud, E. J., et al. 2013, A&A, 558, A33 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  4. Bernstein, G. M., & Jarvis, M. 2002, AJ, 123, 583 [NASA ADS] [CrossRef] [Google Scholar]
  5. Bishop, C. M. 1995, Neural Networks for Pattern Recognition (New York, NY, USA: Oxford University Press, Inc.) [Google Scholar]
  6. Breiman, L. 2001, Machine Learning, 45, 5 [Google Scholar]
  7. Cropper, M., Hoekstra, H., Kitching, T., et al. 2013, MNRAS, 431, 3103 [NASA ADS] [CrossRef] [Google Scholar]
  8. Cropper, M., Pottinger, S., Niemi, S., et al. 2016, VIS: the visible imager for Euclid, 9904, 16 [Google Scholar]
  9. Cummings, J. D., Geisler, D., Villanova, S., & Carraro, G. 2014, AJ, 148, 27 [NASA ADS] [CrossRef] [Google Scholar]
  10. de Bruijne, J. 2012, Astrophys. Space Sci., 341, 31 [Google Scholar]
  11. Deacon, N. R., Magnier, E. A., Best, W. M. J., et al. 2017, MNRAS [Google Scholar]
  12. Desai, S., Mohr, J. J., Bertin, E., Kümmel, M., & Wetzstein, M. 2016, Astron. Comput., 16, 67 [NASA ADS] [CrossRef] [Google Scholar]
  13. Duchêne, G., & Kraus, A. 2013, ARA&A, 51, 269 [Google Scholar]
  14. Duquennoy, A., Mayor, M., & Halbwachs, J.-L. 1991, A&AS, 88, 281 [Google Scholar]
  15. Duvet, L., Gondoin, P., & Saavedra Criado, G. 2010, Euclid Science Requirements Document, Tech. Rep. issue 4, revision 0, ESA, dEM-SA-Dc-00001 [Google Scholar]
  16. Eyer, L., Rimoldini, L., Holl, B., et al. 2015, in Living Together: Planets, Host Stars and Binaries, eds. S. M. Rucinski, G. Torres, & M. Zejda, ASP Conf. Ser., 496, 121 [Google Scholar]
  17. Gaia Collaboration (Prusti, T., et al.) 2016, A&A, 595, A1 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  18. Herlocker, J. L., Konstan, J. A., Terveen, L. G., & Riedl, J. T. 2004, ACM Trans. Inf. Syst., 22, 5 [CrossRef] [EDP Sciences] [Google Scholar]
  19. Hirata, C., & Seljak, U. 2003, MNRAS, 343, 459 [NASA ADS] [CrossRef] [Google Scholar]
  20. Hoekstra, H., Wu, Y., & Udalski, A. 2005, ApJ, 626, 1070 [NASA ADS] [CrossRef] [Google Scholar]
  21. Hunter, J. 2007, Comp. Sci. Eng., 9, 90 [Google Scholar]
  22. Jones, E., Oliphant, T., Peterson, P., et al. 2001, SciPy: Open source scientific tools for Python, http://www.scipy.org/ [Google Scholar]
  23. Kaiser, N., Squires, G., & Broadhurst, T. 1995, ApJ, 449, 460 [NASA ADS] [CrossRef] [Google Scholar]
  24. Kleinbaum, D., & Klein, M. 2010, Logistic Regression: A Self-Learning Text (New York: Springer-Verlag) [Google Scholar]
  25. Kuntzer, T., Courbin, F., & Meylan, G. 2016a, A&A, 586, A74 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  26. Kuntzer, T., Tewes, M., & Courbin, F. 2016b, A&A, 591, A54 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  27. Laureijs, R., Amiaux, J., Arduini, S., et al. 2011, Euclid Study Report [arXiv:1110.3193] [Google Scholar]
  28. Marcy, G. W., & Benitz, K. J. 1989, ApJ, 344, 441 [NASA ADS] [CrossRef] [Google Scholar]
  29. Massey, R., Hoekstra, H., Kitching, T., et al. 2013, MNRAS, 429, 661 [Google Scholar]
  30. Milone, A. P., Piotto, G., Bedin, L. R., et al. 2012, ApJ, 744, 58 [NASA ADS] [CrossRef] [Google Scholar]
  31. Nardiello, D., Milone, A. P., Piotto, G., et al. 2015, A&A, 573, A70 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  32. Ngolè Mboula, F., Starck, J.-L., Ronayette, S., Okumura, K., & Amiaux, J. 2015, A&A, 575, A86 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  33. Nissen, S. 2003, Report, Department of Computer Science University of Copenhagen (DIKU), 31 [Google Scholar]
  34. Paulin-Henriksson, S., Amara, A., Voigt, L., Refregier, A., & Bridle, S. L. 2008, A&A, 484, 67 [Google Scholar]
  35. Pedregosa, F., Varoquaux, G., Gramfort, A., et al. 2011, J. Mach. Learn. Res., 12, 2825 [Google Scholar]
  36. Racca, G. D., Laureijs, R., Stagnaro, L., et al. 2016, The Euclid mission design, Proc. SPIE, 9904, 23 [Google Scholar]
  37. Raghavan, D., McAlister, H. A., Henry, T. J., et al. 2010, ApJSS, 190, 1 [NASA ADS] [CrossRef] [Google Scholar]
  38. Riddle, R. L., Tokovinin, A., Mason, B. D., et al. 2015, ApJ, 799, 4 [NASA ADS] [CrossRef] [Google Scholar]
  39. Robin, A. C., Reylé, C., Derrière, S., & Picaud, S. 2003, A&A, 409, 523 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  40. Rodriguez, D. R., Duchêne, G., Tom, H., et al. 2015, MNRAS, 449, 3160 [NASA ADS] [CrossRef] [Google Scholar]
  41. Rowe, B., Jarvis, M., Mandelbaum, R., et al. 2015, Astronomy and Computing, 10, 121 [Google Scholar]
  42. Schneider, P. 2006, Gravitational Lensing: Strong, Weak and Micro, Saas-Fee Advanced Course (Springer), 33, 269 [Google Scholar]
  43. Semboloni, E., Hoekstra, H., Huang, Z., et al. 2013, MNRAS, 432, 2385 [NASA ADS] [CrossRef] [Google Scholar]
  44. Spergel, D., Gehrels, N., Baltay, C., et al. 2015, ArXiv e-prints [arXiv:1503.03757] [Google Scholar]
  45. Terziev, E., Law, N. M., Arcavi, I., et al. 2013, ApJSS, 206, 18 [NASA ADS] [CrossRef] [Google Scholar]
  46. van der Walt, S., Colbert, S., & Varoquaux, G. 2011, Comp. Sci. Eng., 13, 22 [Google Scholar]
  47. Voigt, L. M., Bridle, S. L., Amara, A., et al. 2012, MNRAS, 421, 1385 [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.